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LECTURE 1
Introductory Adaptive Filtering

1.1. Outline of Lecture 1

1.2. Introduction
1.3. Notation
1.4. Linear system model
1.5. Matrix-form of Wiener-Hopf Equations
1.6. Wiener Solution and its MSE
1.7. Adaptive filtering
1.8. Least Mean Square (LMS) Algorithm
1.9. Recursive Least Squares (RLS) Algorithm

1.10. Tradeoff issues

1.2. Introduction

In the middle of previous century, A. N. Kolmogorov and N. Wiener
have independently established Theory of Linear Optimum Filter based
on statistical approaches (in frequency domain and time domain, re-
spectively) [1–3]. The theory has been regarded in digital communica-
tions as one of the greatest contributions, as well as Shannon’s sampling
theorem which is Magna Carta in the information age. A path to the
adaptive filtering has been opened by Widrow and Hoff in 1960 with
their pioneering work of the least mean square (LMS) algorithm [4].
Another particular algorithm that had already existed at that time is
the recursive least squares (RLS) algorithm. It is mentioned in some
literature that Gauss in the late of 18 century had already formulated
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the recursive least squares solution (see e.g., [5, § 11.7, § 12.6]), al-
though the original work of the RLS algorithm is often credited to
Plackett [6] in modern times.

Lecture 1 aims to study the basics of adaptive filtering, including
a linear system model, the Wiener filter, and the LMS and RLS al-
gorithms with their properties. Throughout this series of lectures, we
restrict our attention to real-valued cases for the sake of simplicity.

1.3. Notation

• R: the set of all real numbers
• N: the set of all nonnegative integers
• N∗ := N \ {0}: the set of all positive integers
• (·)T: vector (matrix) transpose
• R(·): range space
• N (·): null space
• k ∈ N: time index
• N ∈ N∗: filter length
• uk ∈ R: input signal at time k
• dk ∈ R: output signal (i.e., desired response) at time k
• nk ∈ R: measurement noise at time k
• h ∈ R: filter coefficient
• ek(h) ∈ R: an output error at time k, a function of a filter h
• vectors are represented by bold-face lower-case letters (e.g., a)
• matrices are represented by bold-face upper-case letters (e.g.,

A)

1.4. Linear System Model

Let (uk)k∈N ⊂ R be the input process and (nk)k∈N ⊂ R the measure-
ment noise process, where k ∈ N denotes the time index. We consider
a simple linear system model:1

(1.1) dk :=
N∑

i=1

uk−i+1h
∗
i + nk, k ∈ N,

where h∗
i ∈ R, i = 1, 2, · · · , N , stands for the impulse response of the

system. In words, the output signal dk ∈ R is a linear combination of
the N consecutive input signals uk, uk−1, · · · , uk−N+1 plus the noise

1The system model should have the minimum possible complexity according to
Occam’s razor.
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Fig. 1-1. A transversal filter structure for implementing digital filters.

nk. By means of vector notation, it can simply be stated as follows:

(1.2) dk = uT

k h∗ + nk ∈ R, k ∈ N,

where uk := [uk, uk−1, · · · , uk−N+1]
T and h∗ := [h∗

1, h
∗
2, · · · , h∗

N ]T, which
we respectively refer to as the input vector (at time k ∈ N) and the
estimandum (a system to be estimated). Unless otherwise stated, the
input and output data are assumed available. Regarding the system
described above, we may consider the following tasks:

task 1: estimate h∗ (e.g., channel estimation), or
task 2: estimate dk in the form of uT

k h =
∑N

i=1 uk−i+1hi with
a linear digital filter h := [h1, h2, · · · , hN ]T ∈ RN (e.g., echo
cancellation).

A transversal filter shown in Fig. 1-1 is commonly used to implement
a digital filter. In the figure, Z−1 stands for a single delay; input is uk

and output is uT
k h. The two tasks above are related to each other, as

clarified in Section 1.6.

1.5. Matrix-form of Wiener-Hopf Equations

We restrict our attention to the case of discrete time, which is particu-
larly simpler compared to the continuous time case which has actually
been treated by Wiener; the interested readers may refer to [7]. Apart
from the Wiener’s original philosophy, we present the Wiener-Hopf
equations in a simplest possible way. Let us assume that the input and
output processes, (uk)k∈N and (dk)k∈N, are jointly wide-sense stationary
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stochastic processes.2 Consider task 2 in the previous section. A nat-
ural requirement for a filter h ∈ RN would be suppressing maximally
the error signal

(1.3) ek(h) := uT

k h − dk, ∀k ∈ N.

How can we formalize the problem mathematically? As ek(h) can take
negative values, it is nonsense to minimize ek(h) itself. One should
minimize its magnitude. For the sake of convenience, a typical way is
considering the squared error e2

k(h). Because we wish to suppress the
error for any possible pair of input and output (or input and noise),
we take expectation, namely an ensemble average, of the squared error.
The resultant criterion

(1.4) fMSE(h) := E
{
e2

k(h)
}

= E
{(

dk − uT

k h
)2}

, h ∈ R
N ,

is called the mean squared error (MSE). The problem is now formalized
simply as follows: minimize fMSE(h). It is easily verified that

fMSE(h) = hTE{uku
T

k }h − 2hTE{ukdk} + E{d2
k}(1.5)

= hTRh − 2hTp + E{d2
k},(1.6)

where R := E{uku
T
k } ∈ RN×N is the autocorrelation matrix of the

input and p := E{ukdk} ∈ RN the cross-correlation vector between the
input and the output. Therefore, a minimizer of fMSE is characterized
as a solution of the following partial differential equation for h =:
[h1, h2, · · · , hN ]T:

∂fMSE(h)

∂h
:=

[
∂fMSE(h)

∂h1
,
∂fMSE(h)

∂h2
, · · · ,

∂fMSE(h)

∂hN

]T

(1.7)

= 2Rh − 2p = 0,(1.8)

leading to the following normal equation, so-called Wiener-Hopf equa-
tions:

(1.9) Rh = p.

If R is nonsingular (as commonly assumed), (1.9) has the unique so-
lution R−1p, which is widely referred to as the Wiener solution (or

2A stochastic process is said to be strictly stationary if its statistical properties are
invariant to a time shift. Wide-sense stationarity requires weaker conditions than
the strict stationarity. The theory of Wiener filters has been established on the
general assumption of jointly wide-sense stationarity, but the readers who are not
familiar with stochastic processes may think that the input and output processes
are assumed to have their statistical properties invariant to a time shift.
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the Wiener filter). We have seen above that the Wiener-Hopf equa-
tions (1.9) have been derived by minimizing the MSE function, thus
the Wiener filter is also called the minimum MSE (MMSE) filter.

1.6. Wiener Solution and its MSE

Rewrite (1.1) as

(1.10) dk := zk + nk ∈ R, k ∈ N,

where zk := uT
k h∗. Without any loss of generality, we assume the

following:

• E{z2
k} > 0,

• p ∈ R(R) so (1.9) has a solution, and
• pnu := E{nkuk} ∈ R(R).

Let h̃ ∈ RN satisfy Rh̃ = pnu. We then obtain

fMSE(h) = E{[(h − h∗)Tuk − nk]
2}

= (h − h∗)TR(h − h∗) − 2(h − h∗)Tpnu + E{n2
k}

= (h − h∗ − h̃)TR(h − h∗ − h̃) − h̃
T

Rh̃ + E{n2
k}

≥ E{n2
k}− h̃

T

Rh̃.(1.11)

Here, the last inequality holds because of the positive semi-definiteness
of R.3 The equation (1.11) indicates that a minimizer of fMSE is char-
acterized as such a vector hW that satisfies

(1.12) hW − h∗ − h̃ ∈ N (R), i.e., R(hW − h∗ − h̃) = 0.

As 0 ∈ N (R), (1.12) assures that hW := h∗ + h̃ is a Wiener so-
lution (a solution to (1.9)) for any h̃ such that Rh̃ = pnu. If R

is nonsingular, h̃ := R−1pnu is unique and the Wiener solution is
hW := h∗ + R−1pnu = R−1p.

In many scenarios, the noise is statistically orthogonal to the input;
i.e., pnu = 0. In this case, h̃ := 0 satisfies Rh̃ = pnu, meaning that h∗

is a Wiener solution. If in particular R is nonsingular, h∗ is the unique
Wiener solution. Also, Rh̃ = pnu = 0 implies

(1.13) fMSE(h) ≥ E{n2
k}.

In the remainder of this lecture notes, we assume (i) the nonsingularity
of R and (ii) the orthogonality between the input and noise signals,

3A matrix A ∈ RN×N is positive semi-definite if and only if xTAx ≥ 0 for all
x ∈ RN [8]. The positive semi-definiteness of R can be verified by xTRx =
xTE{ukuT

k}x = E{xTukuT
kx} = E{(uT

kx)2} ≥ 0, ∀x ∈ RN .
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and we do not explicitly distinguish task 1 and task 2 as h∗ is the
optimal solution for both tasks.

The ratio between the signal power and the noise power at the
output, i.e., the signal to noise ratio (SNR), is defined as

SNR := 10 log10

E{z2
k}

E{n2
k}

[dB].

Instead of MSE itself, we employ the normalized MSE defined as

(1.14) fNMSE(h) :=
fMSE(h)

E{z2
k}

≥ 10−SNR/10, h ∈ R
N .

The normalized MSE is convenient in numerical simulations to see how
close the achievement of an algorithm to the theoretical lower bound.

1.7. Adaptive Filtering

We have seen that a Wiener solution can be obtain by solving the
normal equations Rh = p, which is a simple linear problem although
the difficulty to solve it depends on the condition of R. However,
the statistical information R and p is not available a priori and thus
should be estimated from data samples in practice. One may think that
we can collect a sufficiently large number of data samples to obtain
reasonable estimates of R and p, and then solve the corresponding
normal equations. This is called batch processing. In real-time systems,
it is required to give an output every time when one receives data. A
straightforward way would be to update the estimates of R and p at
each time instant and solve the corresponding normal equations again
and again. Unfortunately, it is computationally expensive and is not
affordable when the filter length N becomes large.

It is therefore desired to update a filter hk, k ∈ N, iteratively in
such a way that an ’error’ hopefully becomes small as time goes by.
This is called adaptive processing. As the filter coefficients h(i)

k with

hk =: [h(1)
k , h(2)

k , · · · , h(N)
k ] ∈ RN change adaptively in time, the filter-

ing process is called adaptive filtering (see Fig. 1-2). The remarkable
advantages of the adaptive processing over the batch one include low
computational costs and adaptivity to the system changes. An adaptive
filtering algorithm undertakes the role of adjusting the coefficients h(i)

k s.
A bit more mathematically, an adaptive filtering algorithm generates a
vector sequence (hk)k∈N ⊂ RN in a recursive way. We present two clas-
sical approaches and summarize their advantages and disadvantages
below.
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Fig. 1-2. The concept of adaptive filters implemented with the
transversal filter structure.

1.8. Least Mean Square Algorithm

The Least Mean Square (LMS) algorithm is in short an instantaneous
approximation of the gradient algorithm (also known as the steepest
descent algorithm). The gradient method is an iterative method to
minimize a differentiable function f : RN → R by

(1.15) hk+1 := hk − λ∇f(hk), k ∈ N,

for an initial point h0 ∈ RN , where λ > 0 is the step size and ∇f(hk)

denotes the gradient of f at hk; ∇f(h) :=
∂f(h)

∂h
, h ∈ RN . Intuitively,

−∇f(hk) gives a steepest descent direction in which the value of f is
maximally decreased in the neighborhood of hk, and therefore (1.15)
reduces the function value provided λ is sufficiently small. Referring
to (1.6), the gradient of the MSE function is given by

(1.16) ∇fMSE(h) = 2Rh − 2p.

The gradient method to solve the Wiener-Hopf equations is thus given
by

(1.17) hk+1 := hk − λ∇fMSE(hk) = hk − 2λ(Rhk − p), k ∈ N.

Replacing R(:= E{uku
T
k }) and p(:= E{ukdk}) in ∇fMSE(h)(= 2Rh−

2p) respectively by instantaneous approximations uku
T
k and ukdk, we

obtain an instantaneous approximation of the gradient at each k:

(1.18) ∇̂kfMSE(h) := 2uku
T

k h−2ukdk = 2(uT

k h−dk)uk = 2ek(h)uk.

Based on the replacement above, the LMS algorithm is given as follows:

(1.19) hk+1 := hk − λ∇̂kfMSE(hk) = hk − 2λek(hk)uk, k ∈ N,
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where λ > 0 should be ’sufficiently’ small for stability. An upper bound
of λ depends on the definition of stability. A widely-used upper bound
is 2/σ(max)

R (which is required for stability of zero-order solutions of LMS

filters; cf. [7, p. 306]), where σ(max)
R is the maximum eigenvalue of R.

By (1.19), one can easily see that hk−h0 at time k ∈ N is a linear com-
binations of u0, u1, · · · , uk−1; i.e., hk − h0 ∈ span(u0, u1, · · · , uk−1).
The way of replacing the gradient term in the gradient method by
its approximation based on a single measurement is generically called
stochastic gradient method (or stochastic gradient descent method).

1.9. Recursive Least Squares Algorithm

The Recursive Least Squares (RLS) algorithm is in short a method to
solve approximate Wiener-Hopf equations at every time instant some-
what efficiently by a recursive formula based on the matrix inversion
lemma. To be precise, R and p are approximated by sample averages
respectively as Rk+1 := uku

T
k +γRk and pk+1 := ukdk +γpk for initial

estimates R0 ∈ RN×N and p0 ∈ RN . Here, γ ∈ (0, 1) is called the for-
getting factor and should be close to one (e.g., γ = 0.99) for stability.
The RLS algorithm solves the normal equation Rk+1h = pk+1 at each
time k ∈ N with the following recursive formula:

(1.20) R−1
k+1 = γ−1R−1

k − γ−2R−1
k uku

T
k R−1

k

1 + γ−1uT
k R−1

k uk

.

We would not describe the whole recursions of RLS, as it can be easily
found in the literature [5, 7]. Instead, we derive its equivalent ex-
pression similar to (1.19). Right-multiplying both sides of (1.20) by
pk+1(:= ukdk + γpk) yields

(1.21) R−1
k+1pk+1 =

(
γ−1R−1

k − γ−2R−1
k uku

T
k R−1

k

1 + γ−1uT
k R−1

k uk

)
(ukdk + γpk).

By letting hk+1 := R−1
k+1pk+1 and hk := R−1

k pk, (1.20) becomes with
simple manipulations

(1.22) hk+1 := hk − λkek(hk)R
−1
k uk,

where λk := (uT
k R−1

k uk + γ)−1 ∈ (0, γ−1). As will be clarified later,
a simple modification of (1.22) reveals that RLS can be interpreted as
an iterative projection method onto hyperplanes with time-dependent
metric.

Exercise 1. Derive (1.22).



LECTURE 1. INTRODUCTORY ADAPTIVE FILTERING 11

1.10. Tradeoff Issues

The LMS algorithm has O(N) complexity, hence it is simple to imple-
ment, and also it is robust to disturbance (The robustness has been
theoretically proved based on H∞ theory [9]). However, it is well
known that LMS suffers from slow convergence when the input sig-
nal is correlated. In practice, LMS is robust as far as the step size
parameter λ is chosen to be sufficiently small, which however results in
slow convergence.

The RLS algorithm, on the other hand, exhibits very fast conver-
gence even for highly correlated input signals. This however comes at
the price of (i) N2 computational complexity and (ii) poor tracking
performance when the estimandum h∗ changes abruptly. For improv-
ing the tracking performance of RLS, one needs to decrease the value
of γ to forget quickly the information acquired before the change of h∗.
This however results in a large estimation error at steady state. This
is because a small number of data are taken into account in computing
an arithmetic average to estimate R and p and hence the estimates
tend to become inaccurate. Moreover, if the γ value is too small, such
as γ := 0.9, the algorithm tends to diverge.

To overcome the tradeoff issues mentioned above, a significant amount
of efforts has been devoted. In this series of lectures, we focus on a
direction of improving the LMS algorithm. The contents of the follow-
ing lecture, basics of vector spaces, enable us to get a nice geometric
interpretation of the improved algorithms, which greatly helps our un-
derstanding.



LECTURE 2
Basics of Vector Space

2.1. Outline of Lecture 2

2.2. Introduction
2.3. Vector spaces
2.4. Subspaces
2.5. Limit of a sequence of real numbers
2.6. Metric space
2.7. Normed space
2.8. Inner product space
2.9. Hilbert space

2.10. Orthogonal projection theorem

2.2. Introduction

In Lecture 1, we have seen that an adaptive filtering algorithm gener-
ates a sequence of filters (hk)k∈N ⊂ RN in a recursive manner. The
fundamental question would naturally arise: does the sequence (hk)k∈N

converge, or under what conditions does the sequence (hk)k∈N converge?
To discuss the convergence issue, the notion of vector spaces — or more
specifically Hilbert spaces — provides a convenient and reasonably gen-
eral stage [10–12].

Why do we need to learn such abstract mathematics? If we solely
want to discuss about a convergence property of a specific adaptive
filtering algorithm such as LMS, it would be sufficient to define a
‘distance’ between a := [a1, a2, · · · , aN ]T and b := [b1, b2, · · · , bN ]T in

RN as ‖a − b‖ :=
√∑N

n=1(an − bn)2, and say that the filter sequence

13
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(hk)k∈N ⊂ RN converges to some ĥ ∈ RN when
∥∥∥hk − ĥ

∥∥∥ → 0 as

k → ∞. However, is this a unique way to measure the closeness of
a and b? In fact, there are infinitely many ways to define a distance;

e.g., ‖a − b‖ :=
√∑N

n=1 wn(an − bn)2 for an arbitrarily chosen wn > 0,
n = 1, 2, · · · , N . The recent researches of adaptive filtering have shown
that appropriate designs of a distance function yield efficient adapta-
tion rules. If we perform an analysis for a specific distance function, we
need to perform again an analysis when a different distance function
is employed. An analysis based on Hilbert spaces eliminates such an
exhausting repetition, although it is only a ‘stone’ on the mountain of
benefits from the study of Hilbert spaces (cf. [10–13]).

Lecture 2 aims to present some definitions and basic results of vector
spaces.

2.3. Vector Spaces

We repeat that we solely consider the real-valued cases throughout
the lectures. Intuitively, a vector space is a set of elements enjoying
the following properties: (i) it contains a null (zero) vector, (ii) each
element is allowed to be multiplied by any scalar (i.e., any real number
in this lecture), and (iii) each pair of elements is allowed to be added
with each other. Accordingly, two operations are provided: addition
and scalar multiplication.

Definition 2.1. A set X is said to be a vector space (or a linear space)
if addition that associates any pair (x, y) ∈ X × X with x + y ∈ X
and scalar multiplication that associates any pair (α, x) ∈ R ×X with
αx ∈ X satisfy the following conditions, respectively.

(a) For any x, y, z ∈ X:
A1. x + y = y + x (commutative law)
A2. (x + y) + z = x + (y + z) (associative law)
A3. There exists a null vector 0 such that x+0 = x, ∀x ∈ X.

(b) For any x, y ∈ X and any α, β ∈ R:
M1. α(x + y) = αx + αy (distributive law 1)
M2. (α + β)x = αx + βx (distributive law 2)
M3. (αβ)x = α(βx) (associative law)
M4. 0x = 0, 1x = x

We note that an element of a vector space is called a vector, or a
point, and denoted by a bold-face lower-case letters throughout Lecture
2. The vector (−1)x is denoted by −x for convenience, and we have
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x+ (−x) = (1− 1)x = 0 by (M2) and (M4): −x is called the additive
inverse of x.
Example 2.2.

(a) The simplest example of a vector space would be the set of
real numbers R. Both addition and scalar multiplication are
defined in an ordinary way. It is readily verified that these or-
dinary operations satisfy the conditions (A1)–(A3) and (M1)–
(M4). In other words, the concept of vector space is a gener-
alization of R with the ordinary operations.

(b) A slight extension of R is the N dimensional Euclidean space
RN whose elements take the form of [x1, x2, · · · , xN ]T with real
components xi. As usual, addition and scalar multiplication
are performed in a componentwise fashion. Thus, for any x :=
[x1, x2, · · · , xN ]T ∈ RN , y := [y1, y2, · · · , yN ]T ∈ RN , and α ∈
R, we have

x + y = [x1 + y1, x2 + y2, · · · , xN + yN ]T(2.3)

αx = [αx1, αx2, · · · , αxN ]T.(2.4)

(c) The set of all real-valued functions defined on R, X := {f :
R → R}, forms a vector space with the operations given as
follows. For any f , g ∈ X and α ∈ R, we have

f + g : R → R, x *→ f(x) + g(x)(2.5)

αf : R → R, x *→ αf(x).(2.6)

See [10, 11] for other examples of vector spaces.

2.4. Subspaces

Definition 2.7. A subset M of a vector space X is said to be a subspace
(or a linear subspace) if M itself is a vector space under the same
operations of addition and scalar multiplication defined on X.

The following theorem provides a simple way to check whether a
given subset is a subspace.

Theorem 2.8. A nonempty subset M of a vector space X is a subspace
of X if and only if

(a) x + y ∈ M , ∀x, y ∈ M , and
(b) αx ∈ M , ∀x ∈ M , ∀α ∈ R.

The necessary and sufficient condition to be a subspace can also be
expressed as follows: αx + βy ∈ M , ∀x, y ∈ M , ∀α, β ∈ R.
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Exercise 2. Show that the intersection of two subspaces of a vector
space X is a subspace of X.

We are now interested in how ‘large’ a vector space, or a subspace,
is. The ‘size’ of a space is related to the number of parameters that
we need for specifying each element of the space; if we just say ‘a
space’, it means either a vector space or a subspace. To discuss it
clearly, the fundamental concepts of bases and dimensionality should
be introduced. We need first to define linear dependency and span.

Definition 2.9. Given a space X, let S := {x1, x2, · · · , xm} ⊂ X for
some m ∈ N∗. A vector expressed in the form

∑m
i=1 αixi, αi ∈ R, is

called a linear combination of x1, x2, · · · , xm. The set S is said to be
linearly independent if

∑m
i=1 αixi = 0 ⇔ α1 = α2 = · · · = αm = 0.

Otherwise S is said to be linearly dependent. The set span(S) :=
{
∑m

i=1 αixi : αi ∈ R for i = 1, 2, · · · , m} is called the span of S. If
span(S) = X, it is said that S spans X.

Exercise 3. Suppose S := {x1, x2, · · · , xm} is linearly dependent.
Then show that there exists an element of S that can be expressed as
a linear combination of the other elements of S.

Exercise 4. Show that span(S) is a subspace of X.

Definition 2.10. A subset S of a vector space X is said to be a basis
of X if (i) it is linearly independent and (ii) it spans X. If a basis of
X has a finite number of elements, X is said to be finite dimensional;
otherwise, it is said to be infinite dimensional. For a finite dimensional
space X with its basis S, dim(X) := |S| is said to be the dimension of
X, where |S| denotes the cardinality of S.

Note that any vector space has a basis.

Exercise 5. Show that any two bases of a finite-dimensional space
have the same number of elements.

Definition 2.11. Let M be a subspace of a vector space X. Then, a
translation of M by some v ∈ X, defined as V := M + v := {x + v :
x ∈ M}, is called a linear variety.

Proposition 2.12. A subset V of a vector space is a linear variety if
and only if αx + (1 − α)y ∈ V , ∀x, y ∈ V , ∀α ∈ R.

A vector expressed in the form
∑m

i=1 αixi with αi ∈ R satisfying∑m
i=1 αi = 1 is called an affine combination of x1, x2, · · · , xm. The

term αx + (1 − α)y in Proposition 2.12 is an affine combination of x
and y, and linear variety is also called affine set.
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2.5. Limit of a Sequence of Real Numbers

Convergence of a sequence of vectors is defined based on convergence
of real-number sequence, which is defined as follows.

Definition 2.13. Let (an)n∈N ⊂ R be a sequence of real numbers.
Then the sequence is said to converge to a ∈ R if |an − a| → 0 as
n → ∞; we express this as limn→∞ an = a, or an → a, n → ∞. A
more rigorous definition is the following: the sequence (an)n∈N ⊂ R is
said to converge to a ∈ R if for any ε > 0 there exists N(ε) ∈ N such
that |an − a| < ε for all n ≥ N(ε). If there exists a ∈ R to which
(an)n∈N ⊂ R converges, then the sequence is said to be convergent;
otherwise it is said to diverge.

The limit presented above can only be defined for convergent se-
quences. In the case that we do not know whether a sequence is con-
vergent, we can use the notion of limit superior and limit inferior, both
of which can be defined for any real-number sequences.

Definition 2.14. A set S ⊂ R of real numbers is said to be bounded
above (or bounded below) if there exists α ∈ R such that x ≤ α for all
x ∈ S (or x ≥ α for all x ∈ S). If S is bounded above (or below),
such an α is called an upper bound (or lower bound) of S, and the
smallest upper bound (or the largest lower bound) is called supremum
(or infimum). We denote the supremum (or infimum) of S as supx∈S(x)
(or infx∈S(x)).

Proposition 2.15. A real-number sequence (an)n∈N ⊂ R is said to be
monotonically increasing (or decreasing) if an ≤ an+1 (or an+1 ≤ an)
for any n ∈ N. A monotonically increasing (or decreasing) sequence is
convergent if and only if it is bounded above (or below). In particular,
if (an)n∈N ⊂ R is monotonically increasing sequence bounded above,
then limn→∞ an = sup an. If in contrast (an)n∈N ⊂ R is monotonically
decreasing sequence bounded below, then limn→∞ an = inf an.

Definition 2.16. Let (an)n∈N ⊂ R be an arbitrary sequence of real
numbers. Then, the limit superior of (an)n∈N is defined as follows.

(a) If (an)n∈N is not bounded above, lim supn→∞ an := +∞.
(b) If (an)n∈N is bounded above,

(2.17) lim sup
n→∞

an :=

{
limn→∞ ãn if (ãn)n∈N is bounded below
−∞ otherwise,

where ãn := sup{ai : i ≥ n}. Note that (ãn)n∈N is monotoni-
cally decreasing with a reference to Proposition 2.15.
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The limit inferior of (ãn)n∈N is defined as lim infn→∞ an := − lim supn→∞−an.
If lim supn→∞ an = lim infn→∞ an = a for some a ∈ R, then limn→∞ an =
a.

2.6. Metric Space

For a vector space X, an introduction of the following operations brings
us rich results.

• Metric distance d(x, y): a distance (closeness) of two vectors
x, y ∈ X.

• Norm ‖x‖: a length of a vector x ∈ X. A distance of two
vectors x, y ∈ X can be measured by d(x, y) := ‖x − y‖,
which is called the metric induced by the norm.

• Inner product 〈x, y〉: similarity of two vectors x, y ∈ X. A
length of a vector x ∈ X can be measured by ‖x‖ :=

√
〈x, x〉,

which is called the norm induced by the inner product.

A vector space equipped with a metric, a norm, or an inner product
is called a metric space, a normed space, or an inner product space.
We can see that, if X is equipped with an inner product, a norm is
induced automatically, and accordingly a metric is induced. Hence, an
inner product space has more operations available than a normed space
or a metric space, and — more importantly — it has a nice geometric
property as will be seen later. Nevertheless, we start with discussing
about metric spaces because ‘metric’ is the minimum notion to define
convergence of a vector sequence formally.

Definition 2.18. Let X be a vector space. A mapping d : X × X →
[0,∞) is said to be a metric on X if the following conditions are satisfied
for any x, y, z ∈ X.

(a) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y.
(b) d(x, y) = d(y, x) (symmetry).
(c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Example 2.19.

(a) In the vector space R, the most natural distance between two
real values x and y would be an absolute value of x − y.
Namely, d(x, y) := |x − y|, x, y ∈ R, satisfies the conditions
(a)–(c) of metric.

(b) In RN , a metric distance between x := [x1, x2, · · · , xN ]T and
y := [y1, y2, · · · , yN ]T can be defined as follows.

(i) d(x, y) :=
√∑N

n=1(xn − yn)2. This is called the Euclidean
distance.
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(ii) d(x, y) :=
(∑N

n=1 |xn − yn|p
)1/p

, where p ∈ (0,∞). This

is called the Minkowski distance. If in particular p = 1, it
is called the Manhattan distance etc.

(iii) d(x, y) := maxN
n=1 |xn − yn|. This is called the Chebyshev

distance, and it can be obtained by taking a limit of the
Minkowski distance as p → ∞.

(iv) d(x, y) := |S(x, y)| with S(x, y) := {n ∈ {1, 2, · · · , N} :
xn /= yn}. This is called the Hamming distance.

Definition 2.20. Let X be a metric space. Then a sequence (an)n∈N ⊂
X is said to be convergent if there exists a point a ∈ X such that
limn→∞ d(an, a) = 0. This is denoted as limn→∞ an = a, or an → a as
n → ∞.

It should be remarked that the convergence of (an)n∈N ⊂ X is de-
fined through the convergence of the real-number sequence (d(an, a))n∈N

to the real number 0.

Definition 2.21. Let X be a metric space, and S be a subset of X.

(a) x ∈ S is said to be an interior point of S if there exists ε > 0
such that S ⊃ B(x, ε) := {y ∈ X : d(x, y) < ε}. B(x, ε) is
called an open ball centered at x with the radius ε.

(b) S is said to be open if the set of all interior points of S coincides
with S itself. The entire space X and ∅ are regarded to be open.

(c) S is said to be closed if the complement of S, i.e. X \ S :=
{x ∈ X : x /∈ S}, is open. The entire space X and ∅ are re-
garded to be closed.

(d) The minimum closed set containing S is called the closure of
S and is denoted by S̄.

Proposition 2.22.

(a) The intersection of a finite number of open sets are open; the
union of an arbitrary collection of open sets are open.

(b) The intersection of an arbitrary collection of closed sets are
closed; the union of a finite number of open sets are open.

The notions of convergence and closedness are connected by the
following proposition.

Proposition 2.23. A nonempty subset S of a metric space X is closed
if and only if a convergent sequence (xn)n∈N ⊂ S has its limit in S.

Definition 2.24. Let X and Y be metric spaces with dX and dY ,
respectively. A mapping f : X → Y is said to be continuous if x → ξ
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implies f(x) → f(ξ). More precisely, the condition is replaced by the
following: if for any ε > 0 there exists δ > 0 such that dX(x, ξ) < δ,
x ∈ X, implies dY (f(x), f(ξ)) < ε.

We mention that in the general stage of metric spaces we can state
the Banach-Picard fixed-point theorem of contractive mappings, which
is the simplest results of fixed point theory. We would postpone this
topic to Lecture 5 for reaching the Hilbert spaces through a shortest
path.

2.7. Normed Space

Norm — which is a tool to measure a ‘length’ of a vector — is defined
as follows.

Definition 2.25. Let X be a vector space. A mapping ‖·‖ : X →
[0,∞) is said to be a norm on X if the following conditions are satisfied
for any x, y ∈ X and any α ∈ R.

(a) ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0.
(b) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality).
(c) ‖αx‖ = |α| ‖x‖.

Example 2.26.

(a) In the vector space R, ‖x‖ := |x|, x ∈ R, is a norm.
(b) In RN , we can defined a norm of any x := [x1, x2, · · · , xN ]T as

follows.
(i) ‖x‖p := (

∑N
n=1 |xn|p)1/p, where p ∈ [1,∞). This is called

the )p norm. In particular, p = 2 gives the Euclidean norm
(or the )2 norm), and p = 1 gives the )1 norm which has
been used as a regularization term to promote the parsity
of estimates.

(ii) ‖x‖p := (
∑N

n=1 wn |xn|p)1/p, where p ∈ [1,∞) and wn ∈
(0,∞), n = 1, 2, · · · , N . This is called the weighted )p

norm.
(iii) ‖x‖Q := (xTQx)1/2 for a symmetric positive definite ma-

trix Q ∈ RN×N . This is called a quadratic norm, and
Q := I gives the Euclidean norm (or the )2 norm).

(iv) ‖x‖∞ := maxN
n=1 |xn|. This is called the Chebyshev norm

(or the )∞ norm).
(c) The )p norm for p ∈ [1,∞) in (b-i) and )∞ norm in (b-iv)

can be extended to a sequence of infinitely-many real numbers
x := (xn)n∈N with xn ∈ R, and the corresponding spaces are
respectively called the )p space and the )∞ space.
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(i) The )p space consists of all such sequences x := (xn)n∈N of
real numbers that satisfy

∑
n∈N

|xn|p < ∞. The norm of
x := (xn)n∈N in )p is defined as ‖x‖p := (

∑
n∈N

|xn|p)1/p.
(ii) The )∞ space consists of all bounded sequences x :=

(xn)n∈N; i.e., supn∈N |xn| < ∞. The norm of x := (xn)n∈N

in )∞ is defined as ‖x‖∞ := supn∈N |xn|.

Remark. In Example 2.26.(b-i), p ∈ (0, 1) does not give a norm be-
cause it violates the triangle inequality, but the function d(x, y) :=
‖x − y‖p defines a metric; cf. Example 2.19.(b-ii). Also ‖x‖0 := |S(x)|
with S(x) := {n ∈ {1, 2, · · · , N} : xn /= 0} does not define a norm, but
the function d(x, y) := ‖x − y‖0 defines a metric; cf. Example 2.19.(b-
iv). The function ‖·‖0 has been used as a sparseness measure, for
example, in compressed sensing, and it is referred to as the )0 norm for
convenience. The function ‖·‖p for p ∈ (0, 1) has been studied as an
alternative to the )0 and )1 norms, and it is referred to as the )p norm.

Exercise 6. Given a norm ‖·‖ defined on a vector space X, show that
d(x, y) := ‖x − y‖, x, y ∈ X, is a metric; this means that a normed
space can be regarded as a metric space with d(x, y) := ‖x − y‖.

Theorem 2.27. Any finite dimensional subspace in a normed space is
closed.

Note that the closure of any subspace (of a possibly infinite dimen-
sion) in a normed space is a closed subspace.

Definition 2.28. Let X be a normed space. Then a sequence (an)n∈N ⊂
X is said to be strongly convergent (or convergent in the norm) if there
exists a point a ∈ X such that limn→∞ ‖an − a‖ = 0. This is denoted
as limn→∞ an = a, or an → a as n → ∞.

Exercise 7. Let X be a normed space.

(a) Show that ‖x‖ − ‖y‖ ≤ ‖x − y‖, ∀x, y ∈ X.
(b) Show that ‖·‖ is a continuous function (hint: use Exercise

7(a)).

Definition 2.29. Let ‖·‖a and ‖·‖b be norms on a vector space X. The
norms ‖·‖a and ‖·‖b are said to be equivalent if there exist α, β ∈ (0,∞)
such that α ‖x‖a ≤ ‖x‖b ≤ β ‖x‖a, ∀x ∈ X.

It is known for instance that for any norm ‖·‖ on RN there exists
a quadratic norm ‖·‖Q such that ‖x‖Q ≤ ‖x‖ ≤

√
N ‖x‖Q [14]. The

following theorem is of particular importance.
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Theorem 2.30. On a finite-dimensional vector space, any norm is
equivalent to any other norm. (Note: this is not true for infinite-
dimensional vector spaces.)

Theorem 2.30 guarantees that in finite dimensional cases conver-
gence of a vector sequence in a certain norm implies convergence of the
sequence in any other norm.

2.8. Inner Product Space

Now we arrive at a stage which is closely related to our problem of
adaptive filtering, which is basically an estimation problem. To es-
timate (or approximate) something, the common principle behind a
significant amount of methods is orthogonal projection [15]; it will be
discussed in detail in Section 2.10. The reader should already have an
intuitive idea about the orthogonality by elementary geometry. How-
ever, how can we define the orthogonality in a general vector space?
In normed spaces, the important concept of orthogonality is not neces-
sarily available, but it is available in inner product spaces. (An inner
product space is also called a pre-Hilbert space.)

Inner product — which is a tool to measure ‘similarity’ of two vec-
tors — is defined as follows.

Definition 2.31. Let X be a vector space. A mapping 〈·, ·〉 : X×X →
R is said to be an inner product on X if the following conditions are
satisfied for any x, y, z ∈ X and any α, β ∈ R.

(a) 〈x, y〉 = 〈y, x〉 (symmetry).
(b) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0.
(c) 〈αx + βy, z〉 = α 〈x, z〉 + β 〈y, z〉.

Example 2.32.

(a) In the vector space R, 〈x, y〉 := xy, x, y ∈ R, is an inner
product.

(b) In RN , 〈x, y〉Q := xTQy, x, y ∈ RN , defines an inner product,
where Q ∈ RN×N is a symmetric positive definite matrix. In
particular, Q := I produces the standard inner product that
induces the Euclidean norm (or the )2 norm).

(c) The )2 space in Example 2.26.(c-i) becomes a pre-Hilbert space
with the inner product defined as follows: 〈x, y〉 :=

∑
n∈N

xnyn,
x := (xn)n∈N, y := (yn)n∈N. The Cauchy-Schwarz inequality
ensures that the inner product takes a finite value (see Propo-
sition 2.33 below).
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Exercise 8. Given an inner product 〈·, ·〉 defined on a vector space X,
show that ‖x‖ :=

√
〈x, x〉, x ∈ X, is a norm; this means that an inner

product space can be regarded as a normed space with ‖x‖ :=
√

〈x, x〉.

In the following, ‖·‖ employed in an inner product space stands for
the induced norm unless otherwise stated.

Proposition 2.33. Let X be an inner product space. Then, the fol-
lowing hold for any x, y ∈ X.

(a) |〈x, y〉| ≤ ‖x‖ ‖y‖ (The Cauchy-Schwarz inequality); equality
holds if and only if x and y are linearly dependent.

(b) ‖x + y‖2 + ‖x − y‖2 = 2 ‖x‖2 + 2 ‖y‖2 (Parallelogram law).

By Proposition 2.33(b), we see that induced norms satisfy the paral-
lelogram law. The following theorem tells us more: any norm satisfying
the parallelogram law can be induced by an inner product defined with
the norm.

Theorem 2.34. Suppose that the norm ‖·‖ equipped in a normed space
X satisfy the parallelogram law. Then the operator 〈·, ·〉 : X × X → R

defined by

(2.35) 〈x, y〉 :=
1

4

(
‖x + y‖2 − ‖x − y‖2) , x, y ∈ X,

satisfies the conditions of inner product, and ‖x‖ =
√

〈x, x〉, x ∈ X.

Exercise 9. On an inner product space X, let (xn)n∈N ⊂ X and
(yn)n∈N ⊂ X satisfy limn→∞ xn = x ∈ X and limn→∞ yn = y ∈ X.
Then, show that limn→∞ 〈xn, yn〉 = 〈x, y〉.

Definition 2.36. Let X be an inner product space. Then, x ∈ X and
y ∈ X are said to be orthogonal if 〈x, y〉 = 0; this is symbolized by
x ⊥ y. If x is orthogonal to any vector in a set S ⊂ X, then x is said
to be orthogonal to S (written as x ⊥ S).

The well-known Pythagorean theorem in elementary geometry holds
true in inner product spaces.

Lemma 2.37. Given x and y in an inner product space X, x ⊥ y
implies ‖x + y‖2 = ‖x‖2 + ‖y‖2.

We are almost ready to discuss about the orthogonal projection
theorem, as we have formally defined the orthogonality. We however
need a final step — that is completeness of a space — to ensure existence
of orthogonal projection.
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2.9. Hilbert Space

For a while, we get back to metric spaces, which is more general than
normed spaces and inner product spaces.

Definition 2.38. In a metric space X, a sequence (xn)n∈N ⊂ X is said
to be a Cauchy sequence if d(xn, xm) → 0 as n, m → ∞.

Lemma 2.39. In a metric space X, the following hold.

(a) A convergent sequence has its unique limit.
(b) A convergent sequence is a Cauchy sequence.
(c) A Cauchy sequence is bounded.

Definition 2.40. A metric space X is said to be complete if every
Cauchy sequence (xn)n∈N ⊂ X has a limit in X; i.e., there exists
x ∈ X such that limn→∞ xn = x.

Example 2.41. The spaces R with the metric in Example 2.19(a) and
RN with the metric in Example 2.19(b-i), (b-ii), or (b-iii) are complete
metric spaces.

Because a normed space or an inner product space is a special kind
of metric space, the concepts of convergence, closedness, completeness,
etc., apply in these spaces.

Definition 2.42. A complete normed space is said to be a Banach
space.

Example 2.43. Each space with each norm in Example 2.26 (R, RN ,
)p for p ∈ [1,∞), )∞) is a Banach space. Indeed, RN is a Banach space
for any norm (cf. Theorem 2.30).

Definition 2.44. A complete inner product space is said to be a Hilbert
space. We use H to denote a Hilbert space.

Example 2.45. Each space with each inner product in Example 2.32
(R, RN , )2) is a Hilbert space.

In an infinite dimensional Hilbert space, it is not always easy to
prove the strong convergence (see Definition 2.28). In the case that the
strong convergence is difficult (or not able) to prove, the weak conver-
gence is discussed as an intermediate step (or an alternative goal).

Definition 2.46. A sequence (xn)n∈N in a Hilbert space H is said to
weakly convergent if there exists x ∈ H such that limn→∞ 〈xn − x, y〉 =
0 for every y ∈ H. This is denoted as xn ⇀ x as n → ∞; x is called
a weak limit.
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Theorem 2.47. For a sequence (xn)n∈N in a Hilbert space H, the
following hold.

(a) If (xn)n∈N is weakly convergent, it has a unique limit.
(b) Strong convergence of (xn)n∈N implies its weak convergence to

the same point.
(c) If H has a finite dimension, then weak convergence of (xn)n∈N

implies its strong convergence to the same point.

Theorem 2.47.(b) and (c) suggests that there is no need to distin-
guish the two notions of convergence in finite dimensional cases.

Exercise 10. Show examples of weakly convergent sequence that is
not strongly convergent.

2.10. Orthogonal Projection Theorem

In a Hilbert space H, consider the following optimization problem: find
the best approximating point of x ∈ H in a closed subspace M of H.
More particularly, find a vector m ∈ M ‘closest’ to x in the sense
of minimizing ‖x − m‖. The following theorem provides important
insight into the best approximation problem.

Theorem 2.48. Let X be a Hilbert space, M a closed subspace of
X, and x ∈ X chosen arbitrarily. Then, there exists a unique point
m0 ∈ M such that ‖x − m0‖ ≤ ‖x − m‖, ∀m ∈ M . Moreover,
m0 is the unique minimizer if and only if x − m0 ⊥ M . The m0

is called the orthogonal projection of x onto M , and we denote it as
PM(x) := argminm∈M ‖x − m‖.

Definition 2.49. Given a subset S of a Hilbert space H, S⊥ := {x :
x ⊥ S} is said to be the orthogonal complement of S.

Definition 2.50. A vector space X is said to be the direct sum of two
subspaces M1 and M2 if every vector x ∈ X has a unique decomposition
in the form of x = m1 + m2 where m1 ∈ M1 and m2 ∈ M2. In this
case, we write X = M1 ⊕ M2.

Proposition 2.51. For any subset S of a Hilbert space, S⊥ is a closed
subspace.

Theorem 2.52. If M is a closed subspace of a Hilbert space H, then
H = M ⊕ M⊥ and M = M⊥⊥. In fact, any x ∈ H can be decom-
posed uniquely as x = PM(x) + PM⊥(x). This is called orthogonal
decomposition.
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Proposition 2.53. For any closed subspace M of a Hilbert space H,
the following statements hold.

(a) For any x, y ∈ H,

(2.54) 〈x, PM(y)〉 = 〈PM(x), y〉 = 〈PM(x), PM(y)〉 .

(b) For any x, y ∈ H and any α, β ∈ R,

(2.55) PM(αx + βy) = αPM(x) + βPM(y).

Definition 2.56. A subset S of a Hilbert space is said to be orthogonal
if it does not contain the null vector and each pair of its elements is
orthogonal. If in addition each of its elements has unit norm, S is said
to be orthonormal.

Proposition 2.57. An orthogonal set is linearly independent.



LECTURE 3
Alternating Projections and NLMS/APA

3.1. Outline of Lecture 3

3.2. Introduction
3.3. Projection onto one dimensional subspace
3.4. Projection onto multi-dimensional subspace
3.5. Projection onto infinite dimensional subspace
3.6. Projection onto linear variety
3.7. Methods of projections onto subspaces
3.8. Rate of convergence for alternating projections
3.9. Projection based adaptive filtering algorithm: NLMS

3.10. Projection based adaptive filtering algorithm: APA

3.2. Introduction

In this lecture, we will see how the orthogonal projection theorem is
exploited for engineering problems including adaptive filtering. Indeed
the projection theorem plays a role to give a natural link the two no-
tions: algebra and geometry. To make the projection theorem useful
for real-world applications, we learn the calculus first. We start with
the projection onto a one-dimensional subspace. Despite its simplic-
ity, it provides a plane explanation of the Fourier series expansion and
the Gram-Schmidt orthonormalization procedure. We then proceed to
the projection onto a multi-dimensional subspace, a special type of
infinite-dimensional subspace, and a linear variety. Once we learn the
calculus, it is time to use it. We learn several types of projection meth-
ods which are classified into two categories: serial methods and parallel
methods. For instance, the methods of the projections onto subspaces
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(or linear varieties) can be applied to solve systems of linear equations
which we often encounter in engineering problems. We also learn the
known results about the rate of convergence for alternating projections
(i.e., serial methods), which is based on the “angle” between subspaces.
The contents of Sections 3.3–3.8 allow easy access to two projection-
based adaptive filtering algorithms: the Normalized Least Mean Square
(NLMS) algorithm and the Affine Projection Algorithm (APA). In par-
ticular, we learn the geometric properties of the algorithms.

3.3. Projection onto One Dimensional Subspace

Let us start by considering a simple approximation problem: given a
nonzero vector y and an arbitrary vector x ∈ H in a Hilbert space
H, find a vector x̂ ∈ My := span({y}) which is closest to x. By the
definition of span, x̂ can be expressed as x̂ = αy for some α ∈ R. By
Theorem 2.48, it should be satisfied that 〈x − x̂, βy〉 = 0, ∀β ∈ R,
thus 〈x − x̂, y〉 = 〈x − αy, y〉 = 0. This implies α = 〈x, y〉 / ‖y‖2,
hence it follows that

(3.1) PMy (x) = x̂ =

〈
x,

y

‖y‖

〉
y

‖y‖ .

The following example shows that the projection onto a one-dimensional
subspace is the fundamental tool to construct the well-known Fourier
series.

Example 3.2. Let u1 ∈ H be a unit vector (i.e., a vector with its
norm equal to unity). Then, the projection onto M1 := span({u1}) is
given by

(3.3) PM1(x) = 〈x, u1〉u1.

Theorem 2.52 tells us that

(3.4) x = PM1(x) + PM⊥
1
(x) = 〈x, u1〉u1 + PM⊥

1
(x),

hence

(3.5) PM⊥
1
(x) = x − 〈x, u1〉u1,

which expresses the approximation error orthogonal to u1 (and M1).
Next, pick up another unit vector u2 ∈ M⊥

1 (i.e., u2 ⊥ u1). The
projection of the approximation error PM⊥

1
(x) onto M2 := span({u2})
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is given by

PM2(PM⊥
1
(x)) =

〈
PM⊥

1
(x), u2

〉
u2(3.6)

= 〈x − 〈x, u1〉u1, u2〉u2(3.7)

= 〈x, u2〉u2.(3.8)

In analogy with (3.4), we have

PM⊥
1
(x) =PM2(PM⊥

1
(x)) + PM⊥

2
(PM⊥

1
(x))(3.9)

= 〈x, u2〉u2 + PM⊥
2
(PM⊥

1
(x))(3.10)

= 〈x, u2〉u2 + PM⊥
1:2

(x),(3.11)

where M1:2 := span({u1, u2}) (show that PM⊥
2
(PM⊥

1
(x)) = PM⊥

1:2
(x) by

using Lemma 2.37). By (3.4) and (3.11), it follows that

(3.12) x =
2∑

i=1

〈x, ui〉ui + PM⊥
1:2

(x).

By continuing this procedure, we obtain

(3.13) x =
n∑

i=1

〈x, ui〉ui + PM⊥
1:n

(x),

where M1:n := span({ui}n
i=1) with n ∈ {1, 2, · · · , N} if H has finite

(N ∈ N∗) dimension, otherwise n ∈ N∗. By Theorem 2.52, (3.13)
implies

(3.14) PM1:n(x) =
n∑

i=1

〈x, ui〉ui,

from which immediate conclusion is the following.

•
∑n

i=1 〈x, ui〉ui is a best approximation of x in the subspace
M1:n for any n.

• In a finite dimensional case with dimension N , we have M1:N =
{0}, hence x =

∑N
i=1 〈x, ui〉ui gives an expansion of x as a

series of the orthonormal vectors u1, u2, · · · , uN .

In an infinite dimensional case, the following interesting result is known.

• There exists x̂ ∈ span({ui}∞i=1) such that limn→∞

∑n
i=1 〈x, ui〉ui =

x̂; in this case x− x̂ ⊥ span({ui}∞i=1). This is a generalization
of the theory of Fourier series, and the coefficients 〈x, ui〉 are
called Fourier coefficients.
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Example 3.15. Let (v1, v2, · · · ) be a countable or finite sequence of
linearly independent vectors in an inner product space X. Then, we
can construct an orthonormal sequence (u1, u2, · · · ) such that M1:n :=
span({ui}n

i=1) = span({vi}n
i=1) for any n = 1, 2, · · · as follows.

Step 1: Normalize the first vector v1 by u1 := v1/ ‖v1‖.
Step 2: Project the second vector v2 onto M⊥

1:1 by PM⊥
1:1

(v2) =
v2−PM1:1(v2) = v2−〈v2, u1〉u1 [see Theorem 2.52 and (3.14)]
and then normalize it as

u2 := PM⊥
1:1

(v2)/
∥∥∥PM⊥

1:1
(v2)

∥∥∥ .

Step 3: Project the third vector v3 onto M⊥
1:2 by PM⊥

1:2
(v3) =

v3 −
∑2

i=1 〈v3, ui〉ui and then normalize it as

u3 := PM⊥
1:2

(v3)/
∥∥∥PM⊥

1:2
(v3)

∥∥∥ .

...

Step n: Project the third vector vn onto M⊥
1:n−1 by PM⊥

1:n−1
(vn) =

vn −
∑n−1

i=1 〈vn, ui〉ui and then normalize it as

un := PM⊥
1:n−1

(vn)/
∥∥∥PM⊥

1:n−1
(vn)

∥∥∥ .

...

Exercise 11. Show in Example 3.15 that ui ⊥ uj for i /= j, and
span({ui}n

i=1) = span({vi}n
i=1) for any n. The orthonormalization pro-

cedure in Example 3.15 is widely known as the Gram-Schmidt proce-
dure.

3.4. Projection onto Multi-Dimensional Subspace

Now consider a bit more general approximation problem: given nonzero
vectors y1, y2, · · · , yn (n ∈ N∗) and an arbitrary vector x ∈ H in
a Hilbert space H, find a vector x̂ ∈ span({yi}n

i=1) which is clos-
est to x. By the definition of span, x̂ can be expressed as x̂ =∑n

i=1 αiyi for some αi ∈ R. By Theorem 2.48, it should be satisfied

that x − x̂ ⊥ span({yi}n
i=1), or equivalently

〈
x − x̂,

∑n
j=1 βjyj

〉
=

∑n
j=1 βj

〈
x − x̂, yj

〉
= 0, ∀βj ∈ R, which is satisfied if and only if



LECTURE 3. ALTERNATING PROJECTIONS AND NLMS/APA 31

〈
x − x̂, yj

〉
= 0, ∀j ∈ {1, 2, · · · , n}. Observe that

〈
x − x̂, yj

〉
=

〈

x −
n∑

i=1

αiyi, yj

〉

(3.16)

=
〈
x, yj

〉
−

n∑

i=1

αi

〈
yi, yj

〉
(3.17)

=
〈
x, yj

〉
−
[〈

y1, yj

〉
, · · · ,

〈
yn, yj

〉]





α1

α2
...

αn



 .(3.18)

This implies that the condition
〈
x − x̂, yj

〉
= 0, ∀j ∈ {1, 2, · · · , n},

can be expressed in the following matrix form:

(3.19)





〈y1, y1〉 〈y2, y1〉 · · · 〈yn, y1〉
〈y1, y2〉 〈y2, y2〉 · · · 〈yn, y2〉

...
. . .

...
〈y1, yn〉 〈y2, yn〉 · · · 〈yn, yn〉









α1

α2
...

αn



 =





〈x, y1〉
〈x, y2〉

...
〈x, yn〉



 .

(3.19) is called normal equations for the (norm) minimization problem.
The transpose of the n × n matrix appearing in the right hand side of
(3.19) is referred to as the Gram matrix of y1, y2, · · · , yn; the Gram
matrix is symmetric as we consider the real-valued case. The projection
for n = 1 given in (3.1) is readily reproduced as a special case.

Exercise 12. Show that the normal equations (3.19) are uniquely solv-
able if and only if y1, y2, · · · , yn are linearly independent. Note that
existence of a solution to the normal equations is guaranteed by The-
orem 2.48. Note also that, in the case that y1, y2, · · · , yn are linearly
dependent, the multiplicity of the solutions of the normal equations
corresponds to the multiplicity of the expressions of the (unique) pro-
jection x̂ as a linear combination of y1, y2, · · · , yn.

Example 3.20. Consider the case that H := RN with the stan-
dard inner product (i.e., 〈x, y〉 := xTy) and y1, y2, · · · , yn (n ≤ N)
are linearly independent. Let Y := [y1y2 · · ·yn] ∈ RN×n and α :=
[α1, α2, · · · , αn]T. Then, (3.19) becomes Y TY α = Y Tx; the Gram
matrix can be expressed as Y TY . The linear independency of yis
surely implies the nonsingularity of Y TY (cf. Exercise 12), thus we
obtain α = (Y TY )−1Y Tx. The solution of the approximation prob-
lem is given by x̂ =

∑n
i=1 αiyi = Y α = Y (Y TY )−1Y Tx.
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3.5. Projection onto Infinite Dimensional Subspace

In Section 3.4, we have seen that the projection onto a finite dimen-
sional subspace can be computed by solving a system of linear equa-
tions called normal equations. What about the case that a subspace
has infinite dimension? Fortunately, there is a certain important class
of such problems that can be solved in an analogous way. The relation
x = PM(x) + PM⊥(x) for any closed subspace M (see Theorem 2.52)
implies the duality of the two problems: (i) compute PM(x) and (ii)
compute PM⊥(x). Namely, once we solve one of the problems, we can
immediately solve the other.

The simplest case that the projection onto an infinite dimensional
subspace can be computed as easy as finite dimensional cases would
be the following. Let H be an infinite-dimensional Hilbert space, and
define M := {x ∈ H : 〈x, a〉 = 0} for a given nonzero vector a ∈ H.
Since 〈x, a〉 = 0 ⇔ x ⊥ span({a}), we have M = span⊥({a}) which is
a closed subspace. By M⊥ = span⊥⊥({a}) = span({a}), the projection
of any x ∈ H onto M can be expressed as PM(x) = x − Pspan({a})(x),
which can be easily computed by using (3.1). Note that the closed
subspace M has infinite dimension, because assuming M has finite
dimension, say N ∈ N∗, implies H = M ⊕ span({a}) also has finite
dimension N + 1, yielding contradiction.

A slightly more general case can be considered by giving M in
the following form: M := {x ∈ H : 〈x, ai〉 = 0, ∀i = 1, 2, · · · , n}
for given nonzero vectors ai ∈ H; n = 1 gives the previous case. In
this case, 〈x, ai〉 = 0, ∀i ∈ {1, 2, · · · , n} ⇔ x ⊥ span({ai}n

i=1), hence
M = span⊥({ai}n

i=1) which is a closed subspace. The projection of
any x ∈ H onto M can be expressed as PM(x) = x− Pspan({ai}n

i=1)
(x),

where Pspan({ai}n
i=1)

(x) can be obtained by solving the normal equations
presented in Section 3.4. In analogy with the previous case, we can
show that the closed subspace M has infinite dimension.

3.6. Projection onto Linear Variety

A linear variety V in a Hilbert space H is a translation of a subspace
M ⊂ H (see Definition 2.11); i.e., V = M + v for some v ∈ H. When
the underlying subspace M is closed, V is said to be a closed linear vari-
ety. Existence and uniqueness of projection onto a closed linear variety
can be verified essentially by Theorem 2.48. To see this, let us consider
the following approximation problem: given any point x ∈ H find its
closest point x̂ ∈ V , or more specifically, find x̂ ∈ argminy∈V ‖x − y‖,
if such x̂ exists. Express x̂ ∈ V and y ∈ V respectively as x̂ = v + x̂M
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and y = v + yM , where x̂M ∈ M and yM ∈ M . Then, we can
verify that x̂M = argminyM∈M ‖x − (v + yM)‖ = PM(x − v), thus
x̂ = PM(x − v) + v. Note that (x − v) − x̂M = x − x̂ ⊥ M .

Proposition 3.21. Given a closed subspace M in a Hilbert space H,
define a linear variety as V := M + v for some v ∈ H. Then, given
any x ∈ H, there exists a unique point x̂ ∈ V such that ‖x − x̂‖ ≤
‖x − y‖, ∀y ∈ V . Moreover, x̂ is the unique minimizer if and only if
x − x̂ ⊥ M . The x̂ ∈ V is called the orthogonal projection of x onto
V , and we denote it as PV (x) := argminy∈V ‖x − y‖. The projection
has the following expressions.

(a) PV (x) = PM(x − v) + v.
(b) PV (x) = PM(x) + PV (0).

Proposition 3.21(a) can be exploited, for instance, when V has the
form of V := v + span({ai}n

i=1) with v ∈ H and a1, · · · , an ∈ H \
{0} given a priori. In practice M or M⊥ should have reasonably low
dimension so that either PM or PM⊥ has affordable computational costs.
If however v is not given explicitly, we may use Proposition 3.21(b).
Finding PV (0) = argminy∈V ‖y‖ is a minimum norm problem; i.e., find
a vector in V that has minimum norm. This is an important problem,
but before discussing it, we give a proof of Proposition 3.21(b) below.

First of all, we prove the following lemma.

Lemma 3.22. For any x ∈ V , it holds that PM⊥(x) = PV (0). This
suggests that (i) any x ∈ V can be decomposed as x = PM(x) + PV (0)
and (ii) M⊥ ∩ V = {PV (0)}.

Fix x ∈ V arbitrarily. Then, any y ∈ V can be expressed as
y = x + z for some z ∈ M . Hence it follows that

PV (0) = argmin
y∈V

‖y‖ = x + argmin
z∈M

‖x + z‖(3.23)

= x + argmin
z∈M

‖PM(x) + PM⊥(x) + z‖2(3.24)

= x + argmin
z∈M

(
‖PM(x) + z‖2 + ‖PM⊥(x)‖2)(3.25)

= x − PM(x) = PM⊥(x).(3.26)

Let us now prove Proposition 3.21(b). Fix x ∈ V arbitrarily. Since
any y ∈ V can be decomposed as y = PM(y) + PV (0) by Lemma 3.22,
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we can verify

PV (x) = argmin
y∈V

‖x − y‖
(3.27)

= PV (0) + argmin
PM (y)∈M

‖x − [PM(y) + PV (0)]‖(3.28)

= PV (0) + argmin
z∈M

‖PM(x) + PM⊥(x) − [z + PV (0)]‖2(3.29)

= PV (0) + argmin
z∈M

(
‖PM(x) − z‖2 + ‖PM⊥(x) − PV (0)‖2)(3.30)

= PV (0) + PM(x).(3.31)

Proposition 3.21(b) implies that the computation of PV (x) is feasi-
ble if PV (0) and PM(x) are computable. There are two such situations.
The first is the case that a linear variety in a Hilbert space H takes
the form of V := a + span({ai}n

i=1), n ∈ N∗, for some a ∈ H and a
linearly independent set {a1, · · · , an} ⊂ H. In this case, the discussion
in Section 3.4 can directly be used to compute PM(x).

Exercise 13. Show that the problem of finding PV (0) for the first
situation above (V := a+span({ai}n

i=1)) can be reduced to the solution
of the normal equations presented in Section 3.4.

The second situation is that a linear variety in a Hilbert space H
takes the form of V := {x ∈ H : 〈x, ai〉 = bi, ∀i = 1, 2, · · · , n}, n ∈ N∗,
for a linearly independent set {a1, · · · , an} ⊂ H and b1, b2, · · · , bn ∈ R.
To see that the V is a closed linear variety, let us consider the case
of b1 = b2 = · · · = bn = 0. In this particular case, it is clear that V
is the closed subspace span⊥({ai}n

i=1) (see Proposition 2.51). Now let
us go back to the general case. As nonemptiness of V is ensured by
the linear independency of {a1, · · · , an}, pick up an arbitrary element
v ∈ V ; i.e., 〈v, ai〉 = bi, ∀i = 1, 2, · · · , n. Hence V can be expressed as

V = {x ∈ H : 〈x, ai〉 = 〈v, ai〉 , ∀i = 1, 2, · · · , n}(3.32)

= {x ∈ H : 〈x − v, ai〉 = 0 ∀i = 1, 2, · · · , n}(3.33)

= {y + v ∈ H : 〈y, ai〉 = 0 ∀i = 1, 2, · · · , n}(3.34)

= span⊥({ai}n
i=1) + v,(3.35)

implying that V is a closed linear variety. The linear variety V is said
to be of codimension n since its underlying subspace span⊥({ai}n

i=1)
has its orthogonal complement of dimension n. The projection PV (0)
can be computed based on the following theorem.
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Theorem 3.36. In a Hilbert space H, define V := {x ∈ H : 〈x, ai〉 =
bi, ∀i = 1, 2, · · · , n} for a linearly independent set {a1, · · · , an} ⊂ H
and b1, b2, · · · , bn ∈ R. Then, PV (0) =

∑n
i=1 βiai with the unique

vector β := [β1, β2, · · · , βn]T ∈ Rn satisfying GTβ = b, where b :=
[b1, b2, · · · , bn]T ∈ Rn and

(3.37) G :=





〈a1, a1〉 〈a1, a2〉 · · · 〈a1, an〉
〈a2, a1〉 〈a2, a2〉 · · · 〈a2, an〉

...
. . .

...
〈an, a1〉 〈an, a2〉 · · · 〈an, an〉



 ∈ R
n×n.

Exercise 14. Prove Theorem 3.36.

Definition 3.38. In a Hilbert space H, a closed linear variety H :=
{x ∈ H : 〈x, a〉 = b} for some nonzero vector a ∈ H and b ∈ R is
specially called a hyperplane. a is called the normal vector of H .

Example 3.39. Consider the case in Theorem 3.36 that H := RN

with the standard inner product (i.e., 〈x, y〉 := xTy, x, y ∈ H). Let

A := [a1a2 · · ·an] ∈ RN×n. Then, we have β =
(
ATA

)−1
b, and

thus PV (0) = Aβ = A
(
ATA

)−1
b. Letting M := span⊥({ai}n

i=1),
PM⊥(x) = A(ATA)−1ATx for any x ∈ H (see Example 3.20). Hence,
by Proposition 3.21(b), we can verify that

(3.40) PV (x) = x − A(ATA)−1(ATx − b).

Let us consider the case of n = 1; in this case H := {x ∈ H :
〈x, a〉 = b} (a /= 0) is a hyperplane (its underlying subspace has
dimension N − 1). The projection is given by

(3.41) PH(x) = x − 〈a, x〉 − b

‖a‖2 a.

Remark. How should we do when {a1, · · · , an} ⊂ H(:= RN) is lin-
early dependent? In such a case, V := {x ∈ H : 〈x, ai〉 = bi, ∀i =
1, 2, · · · , n} could possibly be empty. As an alternative, we can define
a linear variety as V := argminx∈H

∥∥ATx − b
∥∥

n
, where ‖·‖n stands for

the Euclidean norm in Rn, and the projection is given by

(3.42) PV (x) = x − (AT)†(ATx − b).

Here, (·)† is the Moore-Penrose pseudoinverse [10, 16]. Substituting
x := 0 into (3.42) yields PV (0) = (AT)†b. This implies that (AT)†b
gives the minimum norm solution to the following least squares prob-
lem: minimize

∥∥ATx − b
∥∥

n
over H. Suppose in particular that the

inverse (ATA)−1 exists, which holds if and only if a1, a2, · · · , an are
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linearly independent. Then, (AT)† = A(ATA)−1, reproducing the re-
sult in (3.40), and (AT)†b gives the minimum norm solution to the
system of linear equations ATx = b, x ∈ H.

3.7. Methods of Projections onto Subspaces

Orthogonal projection bridges the worlds of algebra and geometry.
More precisely, one can solve algebraic equations through a geometric
approach. Figure 3-1 describes the behavior of the alternating projec-
tion method in the two-dimensional case. The lines M1 and M2 stand
for linear subspaces in R2, and, starting from an initial point x0 ∈ R2,
the method operates the projections PM1 and PM2 alternately. It is
easily seen that the sequence (xk)k∈N ⊂ R2 converges to the intersect-
ing point. J. von Neumann, one of the greatest mathematicians in the
twenty century, has proven that this applies in a general Hilbert space
[17] as shown below.1

Theorem 3.43 (von Neumann 1933). Let M1 and M2 be closed sub-
spaces in a Hilbert space H. Assume that M1 ∩M2 /= ∅. Then, for any
x ∈ H,

(3.44) lim
k→∞

(PM2PM1)
k(x) = PM1∩M2(x).

Theorem 3.43 can be rephrased as follows: for any x0 ∈ H, the
sequence (xk)k∈N generated recursively as xk+1 := PM2PM1(xk), n ∈
N, converges strongly to the projection PM1∩M2(x0). In the case of
Euclidean spaces, algorithmic solutions based on projection have been
proposed by S. Kaczmarz in 1937 [19] and G. Cimmino in 1938 [20] for
solving systems of linear equations. Let H1, H2, · · · , Hn be hyperplanes
in RN such that H :=

⋂n
i=1 Hi /= ∅. Kaczmarz’s method, based on

cyclic projections onto each hyperplane, is given as follows (see Fig. 3-
1):2

(3.45) xk+1 := PHik
(xk), ik := k (mod n) + 1.

Proposition 3.46. Given any x0 ∈ RN , the sequence (xk)k∈N gener-
ated by (3.45) converges to the projection PH(x0).

1The first alternating projection algorithm seems to have been developed by
H. A. Schwarz around 1870 [18].
2The method in (3.45) was independently discovered in the field of image recon-
struction from projections where it was called Algebraic Reconstruction Technique
(ART) [21].
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Fig. 3-1. Illustration of alternating projection method.
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Fig. 3-2. Illustration of Cimmino’s parallel projection method.

On the other hand, Cimmino’s method, based on parallel projections
onto each hyperplane, is given as follows (see Fig. 3-2):

(3.47) xk+1 :=
n∑

i=1

1

n
[2PHi

(xk) − xk] = −xk +
2

n

n∑

i=1

PHi
(xk), k ∈ N.

Here, the term 2PHi
(xk)−xk is called the reflection of xk with respect

to Hi.

Proposition 3.48. Given any x0 ∈ RN , the sequence (xk)k∈N gener-
ated by (3.47) converges to a point in H(:=

⋂n
i=1 Hi).

I. Halperin has proven the following result [22], which is a general-
ization of Theorem 3.43 and Proposition 3.46.
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Proposition 3.49. Let M1, M2, · · · , Mn be closed subspaces in a Hilbert
space H such that M :=

⋂n
i=1 Mi /= ∅. Then, for any x ∈ H,

(3.50) lim
k→∞

(PMn
PMn−1 · · ·PM1)

k(x) = PM(x).

Proposition 3.51. Let V1, V2, · · · , Vn be closed linear varieties in a
Hilbert space H such that V :=

⋂n
i=1 Vi /= ∅. Then, for any x ∈ H,

(3.52) lim
k→∞

(PVn
PVn−1 · · ·PV1)

k(x) = PV (x).

Corresponding to Proposition 3.51, S. Reich has proven the follow-
ing result on a parallel algorithm [23].3

Proposition 3.53. Let V1, V2, · · · , Vn be closed linear varieties in a
Hilbert space H such that V :=

⋂n
i=1 Vi /= ∅. For any x0 ∈ H, let

(xk)k∈N ⊂ H be a sequence generated by

(3.54) xk+1 :=
n∑

i=1

wiPVi
(xk), k ∈ N,

where wi > 0 denote the weights satisfying
∑n

i=1 wi = 1. Then, (xk)k∈N

converges to the projection PV (x0).

There are several nonlinear extensions of the projection methods
presented above, which will be discussed in Lecture 4.

3.8. Rate of Convergence for Alternating Projec-
tions

Taking a fresh look at Fig. 3-1, we observe the following.

(a) If the “angle” between the two lines, M1 and M2, is π/2 [rad],
the method needs to operate the consecutive projection PM2PM1

only once to reach the intersecting point.
(b) If in contrast the “angle” is close to 0 [rad], the method needs

to operate the consecutive projection PM2PM1 many times to
approach the intersecting point.

This observation naturally suggests that the rate of convergence for
alternating projections onto subspaces depends on the “angle”. This
intuition can indeed be verified for a general Hilbert space. The ques-
tion is: how can we define the angle between two subspaces in a Hilbert
space?

3The case of wi = 1/n, ∀i = 1, 2, · · · , n, in (3.54) was proposed in 1972 for to-
mographic image reconstruction, and it is called the Simultaneous Iterative Recon-
struction Technique (SIRT) [24] (a parallel counterpart of ART).
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Definition 3.55. Let M1 and M2 be subspaces in a Hilbert space H.
We define the angle between M1 and M2 as α(M1, M2) ∈ [0, π/2] whose
cosine c(M1, M2) := cos α(M1, M2) is defined as follows:

c(M1, M2) := sup{|〈x, y〉| : x ∈ M1 ∩ (M1 ∩ M2)
⊥, ‖x‖ ≤ 1,

y ∈ M2 ∩ (M1 ∩ M2)
⊥, ‖y‖ ≤ 1}.(3.56)

Exercise 15. Given any hyperplanes expressed as H1 := {x ∈ H :
〈a1, x〉 = 0} and H2 := {x ∈ H : 〈a2, x〉 = 0} for some nonzero

vectors a1, a2 ∈ H, show that c(H1, H2) =
|〈a1, a2〉|
‖a1‖ ‖a2‖

.

Theorem 3.43 tells us that limk→∞

∥∥(PM2PM1)
k(x) − PM1∩M2(x)

∥∥ =
0. The following proposition shows how fast the real-number sequence
(
∥∥(PM2PM1)

k(x) − PM1∩M2(x)
∥∥)k∈N converges to zero.

Proposition 3.57. Let M1 and M2 be subspaces in a Hilbert space H
such that M := M1 ∩ M2 /= ∅, and c := c(M1, M2). Then for any
x ∈ H

(3.58)
∥∥(PM2PM1)

k(x) − PM(x)
∥∥ ≤ c2k−1 ‖x − PM(x)‖ , k ∈ N.

In the general case of multiple subspaces, the following theorem
holds.

Theorem 3.59. Let M1, M2, · · · , Mn be subspaces in a Hilbert space
H such that M :=

⋂n
i=1 Mi /= ∅, and

(3.60)

c :=

[

1 −
n−1∏

i=1

(1 − c2
i )

]1/2

with ci := c

(

Mi,
n⋂

j=i+1

Mj

)

, i = 1, 2, · · · , n−1.

Then for any x ∈ H

(3.61)
∥∥(PMn

PMn−1 · · ·PM1)
k(x) − PM(x)

∥∥ ≤ ck ‖x‖ , k ∈ N.

Corollary 3.62. Let V1, V2, · · · , Vn be linear varieties in a Hilbert space
H such that V :=

⋂n
i=1 Vi /= ∅, and Mi ⊂ H, i = 1, 2, · · · , n, be the

underlying subspace of each Vi. Also let c ∈ [0, 1] be a constant defined
as in (3.60). Then for any x ∈ H

(3.63)
∥∥(PVn

PVn−1 · · ·PV1)
k(x) − PV (x)

∥∥ ≤ ck ‖x − PV (x)‖ , k ∈ N.
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3.9. Projection Based Adaptive Filtering Algorithm:
NLMS

We consider the Hilbert space H := RN equipped with the standard
inner product. The LMS algorithm is then represented as follows:

(3.64) hk+1 = hk − 2λ(〈uk, hk〉 − dk)uk, k ∈ N.

As mentioned in Section 1.10, the step size parameter λ should be
sufficiently small to stabilize the algorithm, and it results in slow con-
vergence. The reason for this is that, when the ‖uk‖2 is large (i.e.,
when large inputs come), the amount of update ‖hk+1 − hk‖ becomes
proportionally large. To avoid this, the following normalized algorithm
has been proposed [25, 26]:

(3.65) hk+1 := hk − λ
〈uk, hk〉 − dk

‖uk‖2 uk, k ∈ N,

where λ ∈ [0, 2]. This is called the Normalized Least Mean Square
(NLMS) algorithm. At the first glance, NLMS looks no more than
a variant of the LMS algorithm. However, the following discussion
reveals its nice geometric property. Define a hyperplane at each k ∈ N

as

(3.66) Hk :=
{
x ∈ R

N : 〈uk, x〉 = dk

}
, k ∈ N.

Then the projection of an arbitrary y ∈ RN onto Hk is given by (see
(3.41)):

(3.67) PHk
(y) = y − 〈uk, y〉 − dk

‖uk‖2 uk,

which implies that (3.65) can be rewritten as follows:

(3.68) hk+1 = hk + λ (PHk
(hk) − hk) , k ∈ N.

A geometric interpretation of NLMS is given in Fig. 3-3. In the case
of λ = 2, hk+1 = 2PHk

(hk) − hk is the reflection of hk with respect
to Hk. Let us consider the noiseless situation; i.e., nk = 0, k ∈ N. In
this case, dk := 〈uk, h

∗〉 + nk = 〈uk, h
∗〉 and the hyperplane becomes

Hk =
{
x ∈ RN : 〈uk, x〉 = 〈uk, h

∗〉
}
, implying h∗ ∈ Hk. Therefore,

referring to Fig. 3-4, it is seen that Pythagorean theorem (see Lemma
2.37) ensures that ‖hk+1 − h∗‖ ≤ ‖hk − h∗‖ for any λ ∈ [0, 2]. In
words, (hk)k∈N monotonically approaches h∗ at every iteration step.
Also it is seen that hk+1 for λ = 1 is closest to h∗ over λ ∈ [0, 2]. This
implies that the use of λ = 1 provides the fastest convergence. (Note
here that in the presence of noise we cannot guarantee h∗ ∈ Hk, thus
one needs to use λ smaller than one, depending on SNR conditions.)
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Fig. 3-3. Illustration of the NLMS algorithm. Each dot along
the line orthogonal to the hyperplane Hk stands for hk+1 for each
value of λ.
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Fig. 3-4. Illustration of the NLMS algorithm in noiseless case.

The use of λ = 1 reduces NLMS to hk+1 := PHk
(hk) which is similar to

the Kaczmarz’s alternating projection method (3.45). The difference is
that the Kaczmarz’s method utilizes each hyperplane infinitely many
times whereas NLMS utilizes each hyperplane only once. Because of
this difference, the analysis of NLMS becomes quite different from that
of the Kaczmarz’s method. Nevertheless the result about the rate
of convergence for the Kaczmarz’s method gives an insight into the
behavior of NLMS. Consider the two situations: (i) the input signals
are uncorrelated and (ii) the input signals are strongly correlated. The
angle between two hyperplanes Hk and Hj (k /= j) is determined by

c(Hk, Hj) =
〈uk, uj〉
‖uk‖ ‖uj‖

. For the case (i) it is expected that c(Hk, Hj)
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Fig. 3-5. Illustration of a few steps of NLMS in noiseless case.
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Fig. 3-6. Illustration of APA (r = 2) and NLMS for λ = 1 in
noiseless case.

is nearly zero (meaning that the angle is nearly π/2 [rad]), whereas for
the case (ii) it is expected that c(Hk, Hj) is nearly unity (meaning that
the angle is nearly 0 [rad]). Therefore, we can expect that the NLMS
algorithm converges faster in the case (i) compared to the case (ii).
This is clearly demonstrated in Fig. 3-5.
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Fig. 3-7. Illustration of APA (r = 2) and NLMS for λ = 1 in the
presence of noise.

3.10. Projection Based Adaptive Filtering Algorithm:
APA

The slow convergence for strongly correlated input signals, such as
speech, is indeed the major drawback of the NLMS algorithm. To
alleviate the drawback, the Affine Projection Algorithm (APA) has
been proposed. The idea is the following. Since each hyperplane Hk,
k ∈ N, contains h∗ in noiseless case, their intersection Vk := Hk ∩
Hk−1 ∩ · · · ∩ Hk−r+1 for some r ∈ N∗ should also contain h∗ with the
nonemptiness of Vk assumed. Substituting Vk for Hk in (3.68), we
obtain the following algorithm [27]:

(3.69) hk+1 := hk + λ (PVk
(hk) − hk) , k ∈ N.

The linear variety Vk can be rewritten in a matrix form as Vk = {x ∈
RN : UT

k x = dk} with U k := [ukuk−1 · · ·uk−r+1] ∈ RN×r and dk :=
[dk, dk−1, · · · , dk−r+1]T ∈ Rr. The projection PVk

(hk) has the following
closed form expression (see Example 3.39):

(3.70) PVk
(hk) = hk − U k(U

T

k U k)
−1(UT

k hk − dk).

Obviously the NLMS algorithm is a particular case of APA for r =
1, hence APA is a generalization of NLMS. Figure 3-6 illustrates the
behavior of APA (r = 2) and NLMS in the noiseless case. It is seen
that APA gets closer to h∗ than NLMS, suggesting that APA converges
faster than NLMS for strongly correlated input signals. Unfortunately,
this does not apply in the noisy case. Figure 3-7 illustrates the behavior
of APA (r = 2) and NLMS in the presence of noise. Since it is not
ensured that h∗ ∈ Vk (nor h∗ ∈ Hk), we cannot say that APA gets
closer to h∗ than NLMS. This issue will further be discussed in Lecture
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4. In [28], APA has been slightly generalized into the following:

(3.71) hk+1 := hk − λ(UT

k )†(UT

k hk − dk),

which covers the case that the columns of U k are linearly dependent.
Referring to Remark 3.6, (3.71) can be expressed in the form of (3.69)
with

(3.72) Vk := argmin
x∈RN

∥∥UT

k x − dk

∥∥
r
,

where ‖·‖r stands for the Euclidean norm in Rr.
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4.1. Outline of Lecture 4

4.2. Introduction
4.3. Convex set and convex function
4.4. Convex projection theorem
4.5. Calculus : projections onto convex sets
4.6. Convex feasibility problem and set theoretic estimation
4.7. POCS — successive projection methods
4.8. Simultaneous projection methods
4.9. Subgradient projection

4.10. Set theoretic frame for adaptive estimation
4.11. Set theoretic adaptive filtering algorithm

4.2. Introduction

In the previous lectures, we have already presented the theory and
method of orthogonal projections. In this lecture, we present its non-
linear extension. The existence and uniqueness of the orthogonal pro-
jection (Theorem 2.48) can be extended to the more general class of
sets referred to as closed convex. The contents of the remainder of
the lectures stem highly on convex analysis [29–34] which is a well
established segment of nonlinear functional analysis.

The theme of this lecture is the set theoretic adaptive filtering
[35, 36], which is motivated by the set theoretic estimation [37]. An or-
dinary approach to estimation problems is to optimize a cost function
under possible constraints. In practical scenarios, the observed data
are corrupted by ambient noise, and therefore the cost function defined
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Fig. 4-1. Convex and nonconvex sets.

with the noisy data could be unrealistic or even unsolvable. Conse-
quently, the reliability of the solutions, if exist, becomes questionable.
The set theoretic estimation takes a significantly different approach
based on the notion of feasibility. Several iterative algorithms, includ-
ing the popular POCS method, to realize the set theoretic estimation
are presented; the algorithms are actually generalizations of the pro-
jection algorithms presented in Section 3.7. The set theoretic frame for
adaptive filtering provides a reason for the noise sensitivity of APA,
and it brings the set theoretic adaptive filtering. Some known results
about the convergence of a set theoretic adaptive filtering algorithm,
as well as the iterative algorithms for the set theoretic estimation, are
presented.

4.3. Convex Set and Convex Function

A set C is said to be convex if the line segment connecting any pair
of points x, y ∈ C is a subset of C (see Fig. 4-1). Its mathematical
definition is given below.

Definition 4.1. A subset C of a vector space is said to be convex if
αx + (1 − α)y ∈ C, ∀x, y ∈ C, ∀α ∈ (0, 1).

If a set is closed (with a metric equipped) and convex, we say that
it is closed convex. In the remainder of this lecture, we solely consider
a Hilbert space H (rather than other vector spaces such as a Banach
space) to avoid confusion, although it is not always necessary. Several
examples of closed convex sets are given below.
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Example 4.2.

(a) Comparing the definition of convex set and the necessary and
sufficient condition for linear variety in Proposition 2.12, it is
seen that the condition for convex set is weaker than that for
linear variety; the difference is the range of α. Therefore all
linear varieties (and obviously subspaces) are convex.

(b) The set B[0, δ] := {x ∈ H : ‖x‖ ≤ δ} for some δ > 0 is
called a closed ball (centered at 0). More generally, a closed
ball centered at xc ∈ H with the radius δ > 0 is defined as
B[xc, δ] := {x ∈ H : ‖x − xc‖ ≤ δ}.1

(c) Given a nonzero vector a ∈ H and b ∈ R, the set H− :=
{x ∈ H : 〈x, a〉 ≤ b}, or the set H+ := {x ∈ H : 〈x, a〉 ≥ b},
is called a closed halfspace. The boundary of a closed halfspace,
H := {x ∈ H : 〈x, a〉 = b}, is called the boundary hyperplane
of H−, or H+.

(d) Given a nonzero vector a ∈ H and b, c ∈ R such that b < c,
the set S := {x ∈ H : b ≤ 〈x, a〉 ≤ c}, is called a hyperslab.

(e) Let H be of finite dimension and {uk}n
i=1, n ∈ N∗, be its or-

thonormal basis. Then, C := {x ∈ H : |〈x, ui〉| ≤ b, ∀i =
1, 2, · · · , n} for some b > 0 is called a hypercube. A simplest ex-
ample is C :=

{
[x1, x2, · · · , xn]T ∈ Rn : |xi| ≤ b, ∀i = 1, 2, · · · , n

}
.

See [14] for other popular examples of convex sets such as cone,
polyhedra, etc.

Proposition 4.3. For an arbitrary collection of convex sets {Ci}i∈I ,
the intersection

⋂
i∈I Ci is convex.

Propositions 2.22 and 4.3 guarantee that the intersection of an ar-
bitrary collection of closed convex sets are closed convex.

Definition 4.4. A function f : H → R is said to be convex if αf(x)+
(1 − α)f(y) ≥ f(αx + (1 − α)y), ∀x, y ∈ C, ∀α ∈ (0, 1).

Definition 4.5. Given a function f : H → R and a ∈ R, the set
lev≤af := {x ∈ H : f(x) ≤ a}, or lev<af := {x ∈ H : f(x) < a}, is
said to be the (lower) level set, or the strict (lower) level set, of f at
height a.

Proposition 4.6. Let f : H → R be a continuous convex function.
Then, for any a ∈ R, the level set lev≤af is closed convex.2

1The surface of a closed ball is called a hypersphere in general, and it is nonconvex.
2The necessary and sufficient condition for lev≤af to be closed for any a ∈ R is
that f is lower-semicontinuous (which is more general than continuous).
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Fig. 4-2. Metric projection.

Remark. In fact, any closed convex set C ⊂ H can be characterized
as the level set of a continuous convex function (at height 0). For
instance, C = lev≤0 dC , where dC : H → [0,∞), x *→ miny∈C ‖x − y‖
is a metric distance function; the existence of minimum is guaranteed
by the convex projection theorem presented in Section 4.4.

4.4. Convex Projection Theorem

Theorem 4.7. Let H be a Hilbert space, C a closed convex subset of
H, and x ∈ H chosen arbitrarily. Then, there exists a unique point
c0 ∈ C such that ‖x − c0‖ ≤ ‖x − c‖, ∀c ∈ C. Moreover, c0 is the
unique minimizer if and only if 〈x − c0, c − c0〉 ≤ 0, ∀c ∈ C. The c0

is called the convex projection, or the metric projection, of x onto C,
and we denote it as PC(x) := argminc∈C ‖x − c‖.

Figure 4-2 illustrates the geometric property of metric projection;
the characterization of projection 〈x − PC(x), c − PC(x)〉 ≤ 0, ∀c ∈ C,
means that φ ≥ π/2. Moreover, the characterization implies

(4.8) C ⊂ H−(x) := {y ∈ H : 〈x − PC(x), y − PC(x)〉 ≤ 0} .

The boundary hyperplane of H−(x), which is tangent to C at PC(x),
is called a supporting hyperplane of C at PC(x).

The orthogonal projection is a special example of metric projec-
tions; it is called so because of its geometric property. It should be
remarked that existence and uniqueness of the projection (i.e., best
approximation) is ensured for a general closed convex set. This does
not apply when the set is nonconvex. This suggests that one should
classify the world into convex and nonconvex, rather than linear and
nonlinear. Several properties of metric projection are given below.
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Proposition 4.9. Let C be a closed convex set in a Hilbert space H.
Then the following statements hold.

(a) For any x, y ∈ H,

(4.10) ‖PC(x) − PC(y)‖ ≤ ‖x − y‖ .

(b) For any x, y ∈ H,

(4.11) ‖PC(x) − PC(y)‖2 ≤ 〈x − y, PC(x) − PC(y)〉 .

(c) For any x, y ∈ H,

(4.12) ‖x − PC(x)‖2 ≤ ‖x − y‖2 − ‖PC(x) − PC(y)‖2 .

The properties in (4.10) – (4.12) will be discussed in detail in Lec-
ture 5. Obviously, (4.11) implies (4.10) due to the Cauchy-Schwarz
inequality.

Define the operator TC := I + λ(PC − I), λ ∈ [0, 2], where I : H →
H, x *→ x is the identity operator (see Fig. 4-3). If λ < 1, TC(x) does
not reach C, namely it under-projects x toward C. In contrast, if λ > 1,
TC(x) lies farther away from x than PC(x), namely it over-projects x
toward C. The operator TC is thus called the relaxed projector for C
with the relaxation parameter λ ∈ [0, 2]. In the case of λ = 2, TC(x) is
said to be the reflection of x with respect to C.

Proposition 4.13. Let C be a closed convex set in a Hilbert space H.
Then the following statements hold.

(a) For any x, y ∈ H,

(4.14) ‖TC(x) − TC(y)‖ ≤ ‖x − y‖ .

(b) For any x, y ∈ H,

(4.15)
2 − λ

λ
‖x − TC(x)‖2 ≤ ‖x − y‖2 − ‖TC(x) − TC(y)‖2 .

(c) For any x ∈ H and y ∈ C,

(4.16) λ(2 − λ) ‖x − PC(x)‖2 ≤ ‖x − y‖2 − ‖TC(x) − y‖2 .

The relaxed projector TC will play a main role in the theory of
POCS presented in Section 4.7.

4.5. Calculus : Projections onto Convex Sets

This section presents closed-form formulae of the metric projections for
several types of closed convex sets.
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Example 4.17.

(a) See Lecture 3 for the projections onto certain types of closed
linear varieties or closed subspaces.

(b) The projection of y ∈ H onto a closed ball B[xc, δ] := {x ∈
H : ‖x − xc‖ ≤ δ} is given by

(4.18) PB[xc,δ](y) =






y if ‖y − xc‖ ≤ δ

xc + δ
y − xc

‖y − xc‖
otherwise.

(c) The projection of y ∈ H onto the closed halfspace H− :=
{x ∈ H : 〈x, a〉 ≤ b} is given by

(4.19) PH−(y) =






y if 〈y, a〉 ≤ b

y − 〈a, y〉 − b

‖a‖2 a otherwise.

(d) The projection of y ∈ H onto the hyperslab S := {x ∈ H : b ≤ 〈x, a〉 ≤ c}
is given by

(4.20) PS(y) =






y − 〈a, y〉 − b

‖a‖2 a if 〈y, a〉 < b

y if b ≤ 〈y, a〉 ≤ c

y − 〈a, y〉 − c

‖a‖2 a if c < 〈y, a〉 .

(e) In the case of H := RN , the projection of [y1, y2, · · · , yN ]T ∈
RN onto the hypercube C := {[x1, x2, · · · , xN ]T ∈ RN : |xi| ≤
b, ∀i = 1, 2, · · · , n} is given by PC(y) = [p1, p2, · · · , pN ]T with

(4.21) pi :=






yi if |yi| ≤ b
byi

|yi|
otherwise

i = 1, 2, · · · , N.
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In Example 4.17(b)–(d), each projection is computable with O(N)
multiplications, where N stands for the number of multiplications re-
quired to evaluate the inner product. The same applies to the case
of hyperplane. Therefore, hyperplane, closed halfspace, and hyperslab
are often employed in signal processing applications as well as closed
ball and hypercube.

4.6. Convex Feasibility Problem and Set Theoretic
Estimation

Set theoretic estimation stems from a quite different concept from the
usual optimization. The concept is finding a feasible solution — which
is characterized as a vector consistent with all available information
arising from the observed data and a priori knowledge — instead of
finding an optimal solution, which is usually characterized as a min-
imizer of a certain cost function under possible constraints. The set
of all feasible solutions is called a feasible set (or a solution set), and
the problem of finding a feasible solution is called a feasibility problem.
Of course, a feasibility problem can be formulated as the optimization
problem of minimizing the distance to its associated feasible set. How-
ever, feasibility problems is distinguished from optimization problems,
as its concept and formulation is significantly different.

In general, the feasibility set is characterized as the intersection of
multiple sets as follows:

(4.22) S :=
⋂

i∈I

Si.

Each set Si (i ∈ I) accommodates each piece of information available;
it is referred to as a property set. The formal definition of set theoretic
estimation (the definition of Si) is accompanied by the notion of fuzzy
proposition and the interested reader may refer to [37]. In a large
number of applications, the property sets Si are closed convex (so S
is) and in this case the problem is called a convex feasibility problem
[38, 39]. The problem is said to be consistent if S /= ∅.3 In consistent
cases, any point in S is called set theoretic estimate.

A simplest example is the case that each Si is a hyperplane in RN .
In this case, we have seen in Section 3.7 that the problem can be solved
by using the projection method of Kaczmarz, Cimmino, or Reich. An-
other example is the case that each Si is a closed subspace in a general
Hilbert space H. In this case, the Halperin’s result (an extension of von
3If we assume existence of “true” object (or estimandum) h ∈ H, the problem is
said to be fair if h ∈ S, and ideal if S = {h}.
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Neumann’ result for two subspaces) can be applied. From now on, we
consider the case of general convex sets, and assume that the problem
has no analytical solution. This situation frequently happens because
the number of property sets increases as our theoretical and practi-
cal understanding of the physical system under study becomes better,
which makes the problem more complicated. A popular approach in
such a situation is algorithmic. Metric projection is a powerful tool, as
like orthogonal projection in the case of subspaces. In Sections 4.7 and
4.8, we assume that every set Si is “simple” in the sense that the pro-
jection onto Si can be calculated explicitly. In Section 4.9, we discuss
the case that some of Sis are not simple.

4.7. POCS — Successive Projection Methods

We present the fundamental theory of Projections onto Convex Sets
(POCS) — which is also known as Successive Orthogonal Projections
(SOP). As the name suggests, it operates the projection onto each
individual closed convex set in a cyclic manner; it is an extension of
Kaczmarz’s method. The method is generically called successive, serial,
or sequential projection algorithm (see Fig. 3-1). In contrast, we will
present later a generalization of Cimmino’s method and it is called
parallel or simultaneous projection algorithm (see Fig. 3-2).

We formulate the convex feasibility problems in a Hilbert space H
as follows:

(4.23) find x∗ ∈ C :=
⋂

i∈I

Ci,

if such an x∗ exists. Here, Ci ⊂ H, i ∈ I := {1, 2, · · · , n}, is closed
convex. Define the relaxed projectors as follows:

(4.24) Ti := I + λi(PCi
− I), i ∈ I,

where λi ∈ (0, 2). The following is a known fundamental result on the
convergence of POCS in the consistent case.

Theorem 4.25. Assume that C is nonempty. Then for any x0 ∈ H
and any λi ∈ (0, 2), i ∈ I, the sequence (xk)k∈N generated by

(4.26) xk+1 := TnTn−1 · · ·T1(xk), k ∈ N,

converges weakly to a point in C.

Theorem 4.25 was first proved by L. G. Gubin, B. T. Polyak, and
E. V. Raik in 1967 [40]. Later, D. C. Youla provided an alternative
proof in 1982 [41] based on Opial’s lemma which is an important re-
sult in the fixed point theory of nonexpansive mappings. Lecture 5



LECTURE 4. SET THEORETIC ADAPTIVE FILTERING 53

will provide a proof based on a more general result in the fixed point
theory. We emphasize that we cannot guarantee in general that the
weak limit point of the sequence in Theorem 4.25 is PC(x0) unlike the
case of subspaces or linear varieties (see Propositions 3.49 and 3.51).
Nowadays, POCS is a quite popular technique in signal processing, but
its early application to signal processing appeared in 1981 [42]. See,
e.g., [43, 44] for a slightly more general form of POCS.

Remark. The special case that Cis are closed halfspaces in the Eu-
clidean space RN has been proved in 1954 by S. Agmon [45] and
T. S. Motzkin and I. J. Schoenberg [46]. In the case of halfspaces,
λi (i ∈ I) can take a value in (0, 2]. In fact, their works are a gen-
eralization of Kaczmarz’s method in two senses (i.e., hyperplanes to
halfspaces, λi = 1 to λi ∈ (0, 2]). Finding a common point of halfs-
paces is equivalent to solving linear inequalities, thus in this case the
problem is specially called a linear feasibility problem.

In the inconsistent case (i.e., C = ∅), the following result is known
for the case of λi = 1, ∀i ∈ I.

Theorem 4.27. Assume that one of the sets C1, C2, · · · , Cn is bounded;
i.e., there exists some µ < ∞ such that ‖x‖ < µ, ∀x ∈ C. Then, the
sequence generated by

(4.28) xk+1 := PCn
PCn−1 · · ·PC1(xk), k ∈ N,

converges weakly to a point x∗ ∈ Cn. Moreover, letting x∗
1 := PC1(x

∗)
and x∗

i+1 := PCi+1(x
∗
i ), i = 1, 2, · · · , n − 1, then x∗

n = x∗.

4.8. Simultaneous Projection Methods

We shall present a parallel projection algorithm derived by G. Pierra
in 1984 by formulating POCS in a product space [47]. Although the
derivation is interesting, we simply state the results. Define convex
combination coefficients (wi)i∈I as follows:

(4.29) wi > 0, ∀i ∈ I, and
∑

i∈I

wi = 1.

The results in the consistent case is the following.

Theorem 4.30. Assume that C is nonempty. Then for any x0 ∈ H,
any (wi)i∈I satisfying (4.29), and any λ ∈ (0, 2), the sequence (xk)k∈N

generated by

(4.31) xk+1 := xk + λ

(
∑

i∈I

wiPCi
(xk) − xk

)

, k ∈ N,
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converges weakly to a point in C.

Theorem 4.32. Assume that C is nonempty. Then for any x0 ∈ H,
any (wi)i∈I satisfying (4.29), and any λk ∈ [ε, 2 − ε] ⊂ (0, 2), the
sequence (xk)k∈N generated by

(4.33) xk+1 := xk + λk

(
∑

i∈I

wiPCi
(xk) − xk

)

, k ∈ N,

converges weakly to a point in C.

Theorem 4.34. Assume that C is nonempty. Then for any x0 ∈ H
and any (wi)i∈I satisfying (4.29), the sequence (xk)k∈N generated by

(4.35) xk+1 := xk + λk

(
∑

i∈I

wiPCi
(xk) − xk

)

, k ∈ N,

converges weakly to a point in C, where λk ∈ [ε, Lk] ⊂ (0, Lk] with the
extrapolation coefficient

(4.36) Lk :=






∑
i∈I wi ‖PCi

(xk) − xk‖2

∥∥∑
i∈I wiPCi

(xk) − xk

∥∥2 if xk /∈ C

1 otherwise.

All the algorithms in Theorems 4.30, 4.32, and 4.34 take the fol-
lowing steps: (i) project the current estimate xk onto individual closed
convex sets Ci, and then (ii) combine them by taking a weighted av-
erage. In contrast to POCS, one can operate all the projections si-
multaneously, thus it suits for parallel computing. The only difference
among the algorithms in Theorems 4.30, 4.32, and 4.34 is the relax-
ation parameter λ or λk. Theorem 4.32 is a generalization of Theorem
4.30 as it allows the relaxation parameter λ to vary from iteration to
iteration. We cannot however say that Theorem 4.34 is a generaliza-
tion of Theorem 4.30 because Lk may become less than 2, although the
convexity of ‖·‖2 ensures Lk ≥ 1. In [44], it is discussed that, under a
certain condition, λk is allowed to take a value in [ε, 2Lk] ⊂ (0, 2Lk].

Finally, we present a known result for the inconsistent case.

Theorem 4.37. Assume that one of the sets C1, C2, · · · , Cn is bounded.
Then for any x0 ∈ H, any (wi)i∈I satisfying (4.29), and any λk ∈
[ε, 2 − ε] ⊂ (0, 2), the sequence (xk)k∈N generated by

(4.38) xk+1 := xk + λk

(
∑

i∈I

wiPCi
(xk) − xk

)

, k ∈ N,
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converges weakly to a point x∗ ∈ H achieving weighted least squares;
i.e., x∗ ∈ argminx∈H

∑
i∈I wid2(x, Ci).

In short, Theorem 4.37 tells us that the simultaneous projection
method generates a vector sequence convergent to a weighted least
squares solution. Due to this property, it has been reported that SIRT
(a simultaneous projection method) gives better behavior than ART
(a successive projection method) in noisy tomographic reconstruction
problems, because noisy data tend to make the hyperplanes noninter-
secting.

4.9. Subgradient Projection

It has been assumed so far that the projection onto each Ci can be
calculated explicitly. In this section, we consider the case that some of
the sets are not simple.

Definition 4.39. Let f : H → R be continuous and convex. Then, for
any x ∈ H, there always exists x̃ ∈ H satisfying

(4.40) 〈y − x, x̃〉 + f(x) ≤ f(y), ∀y ∈ H.

The vector x̃ is called a subgradient of f at x. The set of all such vectors
is called the subdifferential of f at x, and it is denoted as ∂f(x).

Remark. Subgradient is a generalization of gradient, since it can al-
ways be defined for any continuous convex functions. If in particular f
is differentiable,4 then the gradient ∇f(x) is the unique subgradient;
i.e., ∂f(x) = {∇f(x)}.

The following proposition can readily be verified.

Proposition 4.41. Let f : H → R be continuous and convex.

(a) Assume that f(x) > infy∈H f(y), ∀x ∈ H. Then 0 /∈ ∂f(x)
for any x ∈ H.

(b) Assume that there exists x such that f(x) = infy∈H f(y). Then
0 ∈ ∂f(x) if and only if f(x) = miny∈H f(y).

Let C ⊂ H be a nonempty closed convex set, and f : H → R a con-
tinuous convex function such that C = lev≤0f . When the projection
onto C is not simple, a possible strategy is to employ its outer approx-
imation, say S(⊃ C). Fortunately, the separation theorem, which is
one of the fundamental results in convex analysis [29–34], guarantees

4To be precise, a continuous convex function f has a unique subgradient at x ∈ H
if it is Gâteaux differentiable at x [30]. The unique subgradient is identical to its
Gâteaux differential at x.
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Fig. 4-4. Illustrations of subgradient projection. (a) Tsp(f)(x) is
the metric projection of x onto a hyperplane separating x and C.
(b) The separating hyperplane is the intersection, in the product
space H × R, of H× {0} and the tangent plane at (x, f(x)).

the existence of a hyperplane separating any closed convex set from a
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point in its complement (see Fig. 4-4.a); such a hyperplane is partic-
ularly called a separating hyperplane. Hence, a natural choice of the
outer approximation of C would be the closed halfspace whose bound-
ary is the separating hyperplane, since the projection can be computed
easily. How can we construct such a closed halfspace systematically?

If x ∈ lev≤0f(= C), then the metric projection of x onto C is
obviously given by PC(x) = x. Assume now x /∈ lev≤0f(= C), that is
f(x) > 0. In this case, Proposition 4.41 implies 0 /∈ ∂f(x), thus for an
arbitrary f ′(x) ∈ ∂f(x) we can define a closed halfspace as follows:

(4.42) H−(x) := {y ∈ H : 〈y − x, f ′(x)〉 + f(x) ≤ 0} .

We can readily verify x /∈ H−(x). Moreover, we can show that lev≤0f ⊂
H−(x) as follows: letting z ∈ lev≤0f , the definition of subgradient sug-
gests that

(4.43) 〈z − x, f ′(x)〉 + f(x) ≤ f(z) ≤ 0,

which means z ∈ H−(x). Therefore the boundary hyperplane of
H−(x) separates x and lev≤0f (see Fig. 4-4). As x /∈ H−(x), the
projection of x onto H−(x) is given as follows (see Example 4.17.c):

(4.44) PH−(x)(x) := x − f(x)

‖f ′(x)‖2f ′(x).

A subgradient projection is an operator that maps x /∈ lev≤0f to
PH−(x)(x) and x ∈ lev≤0f to x itself.

Definition 4.45. Let f : H → R be a continuous convex function such
that lev≤0f /= ∅. We can then define

(4.46) Tsp(f) : H → H, x *→





x − f(x)

‖f ′(x)‖2f ′(x) if f(x) > 0,

x otherwise,

where f ′(x) ∈ ∂f(x). The mapping Tsp(f) is called a subgradient pro-
jection relative to f .

Remark. Given any closed convex set C ⊂ H, a subgradient pro-
jection relative to the distance function dC coincides with the metric
projection onto C; i.e., Tsp(dC ) = PC (see Remark in Section 4.3).

Theorem 4.47. Let fi : RN → R, i ∈ I := {1, 2, · · · , n}, be a con-
tinuous convex function such that C :=

⋂
i∈I lev≤0fi /= ∅. Assume the

uniform boundedness of the subgradients: i.e., for some x̃ ∈ C there
exists K(x̃) ∈ R such that ‖f ′

i(x)‖ ≤ K(x̃) for all the subgradients
f ′

i(x) ∈ ∂fi(x), for any i ∈ I and any such x ∈ RN that satisfies
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‖x − x̃‖ ≤ ‖x0 − x̃‖, where x0 ∈ RN is an arbitrary initial vector.
Then, the sequence generated by

(4.48) xk+1 := TnTn−1 · · ·T1(xk), k ∈ N,

converges to a point in C, where Ti := I + λi(Tsp(fi) − I), i ∈ I, for an
arbitrary λi ∈ (0, 2).

A remarkable advantage of the algorithm in (4.48) over POCS is
that only the computation of a subgradient is required (instead of the
computation of the projection which is obtained by solving a best ap-
proximation problem).

Theorem 4.49. Let fi : H → R, i ∈ I := {1, 2, · · · , n}, be a contin-
uous convex function such that C :=

⋂
i∈I lev≤0fi /= ∅. Assume that

the subdifferentials of (fi)i∈I are locally uniformly bounded (cf. [44]).
Then, for any x0 ∈ H and any (wi)i∈I satisfying (4.29), the sequence
(xk)k∈N generated by

(4.50) xk+1 := xk + λk

(
∑

i∈I

wiTsp(fi)(xk) − xk

)

, k ∈ N,

converges weakly to a point in C, where λk ∈ [ε, (2 − ε)Lk] ⊂ (0, 2Lk)
with the extrapolation coefficient

(4.51) Lk :=






∑
i∈I wi

∥∥Tsp(fi)(xk) − xk

∥∥2

∥∥∑
i∈I wiTsp(fi)(xk) − xk

∥∥2 if xk /∈ C

1 otherwise.

Remark. The key property that is common to the iterative algorithms
in Theorems 4.47 and 4.49 is the following:

(4.52) ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ , ∀x∗ ∈ C, ∀k ∈ N.

The sequence (xk)k∈N satisfying (4.52) is said to be Fejér monotone
with respect to C.5 It is clear that any Fejér monotone sequence is
bounded. The Fejér monotonicity comes from the following property
of subgradient projection:

(4.53)
∥∥Tsp(f)(x) − x∗

∥∥ ≤ ‖x − x∗‖ , ∀x ∈ H, ∀x∗ ∈ lev≤0f.

The property in (4.53) is called quasi-nonexpansivity, which plays an
important role in Lecture 5.

5The notion of Fejér monotonicity seems to be coined by T. S. Motzkin and
I. J. Schoenberg [46].
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4.10. Set Theoretic Frame for Adaptive Estimation

Recalling the discussion in Section 3.10, APA is based on the projection
onto the following set:

(4.54) Vk :=
{
x ∈ R

N : ‖ek(x)‖2
r = δk

}
,

where ek(x) := UT

k x − dk ∈ Rr, x ∈ RN , U k := [ukuk−1 · · ·uk−r+1] ∈
RN×r, dk := [dk, dk−1, · · · , dk−r+1]T ∈ Rr, and

(4.55) δk := min
y∈RN

‖ek(y)‖2
r , k ∈ N.

As we know that h∗ /∈ Vk in the presence of noise, Vk should be “fat-
tened” somehow to cover h∗. The linear variety Vk is shaped like a
“line” in RN , and we can “fatten” it with a constant ρ ≥ δk ≥ 0 as
follows:

(4.56) Ck(ρ) :=
{
x ∈ R

N : ‖ek(x)‖2
r ≤ ρ

}
,

which is shaped like a “tube” whose “center core” is Vk(= Ck(δk)). The
set Ck(ρ) quantitatively formulates the probability theoretic property
of the noise process (nk)k∈N, and it is called a stochastic property set.
Moreover, the convexity of ‖·‖2 suggests Ck(ρ) /= ∅ if and only if ρ ≥ δk.
Since we typically have r 6 N , it tends to be satisfied that R(UT

k ) =

Rr, implying δk = miny∈RN

∥∥UT

k y − dk

∥∥2

r
= 0. Therefore, Ck(ρ) /= ∅

for any ρ ≥ 0 in practice.
It is clear that the parameter ρ governs the membership probabil-

ity that h∗ ∈ Ck(ρ). By ek(h
∗) = −nk, the membership probability

is identical to the probability of ξ :=
∑r

i=1 n2
k−i+1 = ‖nk‖2

r ≤ ρ. As-
sume that (nk)k∈N is the noise process of i.i.d. (independent, identically
distributed) Gaussian random variables N (0, σ2); i.e., the normal dis-
tribution with the mean 0 and the variance σ2. Then, the sum of its
squares ξ is well known to follow the χ2 statistic with r degrees of
freedom whose probability density function is given by (see Fig. 4-5)6

(4.57) fr(ξ) =






1

(σ
√

2)rΓ(r/2)
ξr/2−1e−ξ/2σ2

if ξ > 0

0 if ξ ≤ 0.

The membership probability is evaluated as follows:

(4.58) Pr (h∗ ∈ Ck(ρ)) = Pr (ξ ≤ ρ) =

∫ ρ

0

fr(ξ)dξ ∈ [0, 1],

where Pr(·) stands for the probability that an event (e.g., h∗ ∈ Ck(ρ))
happens. As seen from Fig. 4-5, fr is a strictly monotonically decreasing

6Γ represents the gamma function defined as Γ(α) :=
∫ ∞

0 xα−1e−xdx, α > 0.
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Fig. 4-5. χ2 density function (σ2 = 1).

function over ξ ≥ 0 for r = 1, 2. For r ≥ 3, fr has its unique maximum
at ξ = (r−2)σ2. The mean and the variance of ξ are given by mξ = rσ2

and σ2
ξ = 2rσ4, respectively.7

Looking at the curve of r = 5 in Fig. 4-5, it is seen that
∫ ρ

0 fr(ξ)dξ
remains to be nearly zero if we slide slightly the value of ρ from zero in
the positive direction. This implies that the membership probability
that h∗ ∈ Ck(ρ) is nearly zero for a small value of ρ ≥ 0. In other
words, the probability that h∗ stays in the vicinity of Vk(= Ck(δk)) is
nearly zero. This observation applies to all r ≥ 3, which explains the
noise sensitivity of APA for r ≥ 3. For r = 1, on the other hand, it is
seen that

∫ ρ

0 fr(ξ)dξ becomes large if the value of ρ is increased slightly
from zero. This implies that h∗ stays in the vicinity of Hk(= Ck(0) for
r = 1) with high probability (see (3.66)), which agrees with the noise
robustness of NLMS.

4.11. Set Theoretic Adaptive Filtering Algorithm

How can we design the parameter ρ to design the stochastic property
set Ck(ρ) in (4.56)? How should we construct an efficient adaptive
filtering algorithm? We discuss these topics in this section. Regarding
the choice of ρ, there are two perspectives:

(a) the membership probability that h∗ ∈ Ck(ρ) can be enhanced
by increasing the value of ρ, contributing to the stability of
algorithm;

7The case that the noise process (nk)k∈N is Gaussian but not necessarily i.i.d. was
discussed in [35]. The case that (nk)k∈N is non-Gaussian was discussed in [44] with
the well-known central limit theorem.
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(b) increasing the value of ρ too much results in losing the informa-
tion (In a extreme case, Ck(∞) = RN contains no information).

Therefore, the value of ρ should be chosen adequately. Under the
assumption that (nk)k∈N is i.i.d. Gaussian random variables N (0, σ2),
the following have been proposed in [35].
Example 4.59.

(a) ρ1 := (r +
√

2r)σ2 (mean + standard deviation)
(b) ρ2 := rσ2 (mean)
(c) ρ3 := max{0, (r − 2)σ2} (peak, i.e., the value of ξ giving fr(ξ)

its unique maximum)

It holds that 0 ≤ ρ3 ≤ ρ2 ≤ ρ1. Another possible choice is ρ4(α) :=
ρ3 + α

√
2rσ2, α > 0 (peak + standard deviation ×α).

We now explain how to construct an efficient algorithm. In the
following, we assume Ck(ρ) /= ∅ (⇔ ρ ≥ δk). It is readily verified that
Ck(ρ) is closed convex. Since h∗ can be characterized as a common
point of the closed convex sets (Ck(ρ))k∈J for J := {i ∈ N : h∗ ∈
Ci(ρ)}, we can reformulate the adaptive filtering problem as a sort of
convex feasibility problem. However, there are essential differences.
First, data arrive sequentially, hence each set Ck(ρ) accommodating
the information carried by each datum becomes available one by one.
Second, the number of sets Ck(ρ) increases as time goes by, but finite
memory storage implies that old data need to be discarded for storing
newer data. This suggests that each set Ck(ρ) can be exploited only
a finite number of times, whereas the convergence theorems of the
existing algorithms for the convex feasibility problems have been proved
under the assumption that each set is exploited infinitely many times.
This is important in practice because of the nature of the adaptive
filtering problem as, e.g., in rapidly changing environments.

Since the metric projection onto Ck(ρ) is computationally expen-
sive, the subgradient projection is employed. It has been reported that
the simultaneous projection algorithm as in Theorem 4.49 converges
faster, than successive projection algorithms such as POCS, thanks to
the extrapolation coefficient. Hence we present a simultaneous subgra-
dient projection algorithm below.

Let Ik := {ι(k)
1 , ι(k)

2 , · · · , ι(k)
q } ⊂ {0, 1, 2, · · · , k} for some q ∈ N∗,

which indicates the sets to be processed at each iteration k and is called
control sequence. In the case of parallel computing, q corresponds to
the number of parallel processors to be engaged. A simple example is
Ik = {k, k − 1, · · · , k − q + 1} indicating the use of the q newest data.

In addition, let (w(k)
ι )ι∈Ik

, k ∈ N, be the set of weights assigned to
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(Cι(ρ))ι∈Ik
, satisfying

(4.60) w(k)
ι > 0, ∀ι ∈ Ik, and

∑

ι∈Ik

w(k)
ι = 1.

The stochastic property set in (4.56) can be expressed as

(4.61) Ck(ρ) := lev≤0gk =
{
x ∈ R

N : gk(x) ≤ 0
}

,

where

(4.62) gk : R
N → R, x *→ ‖ek(x)‖2

r − ρ =
∥∥UT

k x − dk

∥∥2

r
− ρ.

Since gk is differentiable with its gradient given by

(4.63) ∇gk(x) = 2U k(U
T

k x − dk),

the subdifferential of gk is a singleton: ∂gk(x) = {∇gk(x)}, ∀x ∈ RN .
The subgradient projection relative to gι is given as follows:
(4.64)

Tsp(gι) : H → H, x *→





x − gι(x)

‖∇gι(x)‖2∇gι(x) if gι(x) > 0,

x otherwise.

In particular, if ‖eι(hk)‖2
r > ρ, ι ∈ Ik, then Tsp(gι) maps the current

estimate hk as follows:

(4.65) Tsp(gι)(hk) = hk −
‖eι(hk)‖2

r − ρ

2
∥∥U ι(U

T

ι hk − dι)
∥∥2 U ι(U

T

ι hk − dι),

which is the metric projection onto the closed halfspace
(4.66)

H−
ι (hk) :=

{
x ∈ R

N : 〈x − hk, ∇gι(hk)〉 + gι(hk) ≤ 0
}
⊃ Cι(ρ).

Theorem 4.67. For an arbitrary h0 ∈ RN , the sequence (hk)k∈N gen-
erated by

(4.68) hk+1 := hk + µk

(
∑

ι∈Ik

w(k)
ι Tsp(gι)(hk) − hk

)

,

where µk ∈ (0, 2Mk) with the extrapolation coefficient
(4.69)

Mk :=






∑
ι∈Ik

w(k)
ι

∥∥Tsp(gι)(hk) − hk

∥∥2

∥∥∥
∑

ι∈Ik
w(k)

ι Tsp(gι)(hk) − hk

∥∥∥
2 if hk /∈

⋂
ι∈Ik

Cι(ρ)

1 otherwise

satisfies the following.
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(a) (Monotone approximation) Define Jk := {ι ∈ Ik : hk /∈ Cι(ρ)}.
Suppose that C(k)

0 :=
⋂

ι∈Jk
H−

ι (hk) /= ∅ and hk /∈ C(k)
0 . Then,

(4.70)
∥∥∥hk+1 − ĥ

∗

k

∥∥∥ <
∥∥∥hk − ĥ

∗

k

∥∥∥ , ∀ĥ
∗

k ∈ C(k)
0 .

(b) (Fejér monotonicity) Suppose that there exists κ0 ∈ N such

that C0 :=
⋂

k≥κ0
C(k)

0 /= ∅. Then,

(4.71)
∥∥∥hk+1 − ĥ

∗
∥∥∥ ≤

∥∥∥hk − ĥ
∗
∥∥∥ , ∀ĥ

∗
∈ C0.

(c) (Convergence) In addition to the condition in Theorem 4.67.b,
assume that
(i) there exist ε1, ε2 ∈ (0, 2) such that µk ∈ [ε1Mk, (2−ε2)Mk],

∀k ≥ κ0, and
(ii) C0 has an interior point.

Let (w(k)
ι )ι∈Ik

, k ∈ N, be the weights satisfying infk≥κ0 minι∈Jk
w(k)

ι

> 0. Then, (hk)k∈N converges to a point ĥ ∈ lim infk→∞ C(k)
0 ,

where lim infk→∞ C(k)
0 :=

⋃∞
k=0

⋂
n≥k C(n)

0 .

The method in (4.68) is called the adaptive parallel subgradient pro-
jection (APSP) algorithm. The advantages of the APSP algorithm
include the following.

(a) It converges faster than NLMS or APA even for colored inputs
thanks to the simultaneous use of multiple pieces of informa-
tion by means of parallel projection with the extrapolation
coefficient (which enlarges the step size).

(b) It enjoys stable convergence/tracking even in noisy environ-
ments thanks to the use of reasonably designed stochastic prop-
erty sets. The stability is implied by Theorem 4.67.a and The-
orem 4.67.b.

(c) It enjoys low computational complexity and suits for parallel
computing. If q concurrent processors are engaged, the com-
putational complexity imposed on each processor at each iter-
ation is O(N). We emphasize that an algorithm with O(N)
complexity is strongly desired for real-time implementation of
adaptive filters with large filter length.

Remark. Theorem 4.67 suggests that the sequence (hk)k∈N converges

under certain conditions no matter how we choose the weights w(k)
ι .

The simplest example is the uniform weights: w(k)
ι := 1/q, ∀ι ∈ Ik,

k ∈ N. Note however that the weights govern the direction of update
and thus affect the rate of convergence. The optimal weight designing
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problem is difficult in general to solve with low computational costs.
In [36], a practical weight designing technique with O(N) complexity
has been proposed. The technique inductively utilizes a simple closed-
form formula to compute the projection onto the intersection of two
closed halfspaces that are defined by a triplet of vectors. The result-
ing weights have been shown to be optimal in a pairwise manner in
the sense of certain worst-case (min-max) optimization. Another tech-
nique that realizes exponentially decaying weights has been proposed
for hyperplanes in [48] and for linear varieties in [49]. See [48, 50–
57] and Lecture 6 for further developments and applications of the
set-theoretic adaptive filtering algorithms.
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5.2. Introduction

In practical scenarios where signal processing is required, enough in-
formation is hardly available to identify the ideal solution without any
ambiguity. The reasons for that include (i) the presence of ambient
noise, distortion, etc., occurring in measurement process and (ii) pos-
sible loss of acquired information. In addition, the limitation of time
and computational resources spent for signal processing makes it fur-
ther unrealistic to accomplish the perfect identification of the ideal
solution.

A realistic approach is thus to define a set of solution candidates
from each piece of available information, and find a common point of
the sets of candidates. This approach is undoubtedly the set theoretic
estimation or set theoretic adaptive filtering that we learned in Lecture
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4. What is desired for iterative algorithms? Let S ⊂ H be the set
of all common points (i.e., the intersection of the sets of candidates)
and T : H → H the mapping that shifts the current estimate xk to
its following estimate xk+1, k ∈ N; i.e., xk+1 = T (xk). The desired
properties should be as follows.

(a) If xk is outside of S, then T should push it closer to S. Mathe-
matically speaking: if xk /∈ S, then it is desired to be satisfied
that ‖xk+1 − x∗‖ < ‖xk − x∗‖, ∀x∗ ∈ S. Note that the in-
equality is strict unlike the case of Fejér monotonicity.

(b) If xk is inside of S, then T should keep it staying there. Math-
ematically speaking: if xk ∈ S, then it is desired to be satisfied
that T (xk) = xk; in this case xk is called a fixed point of T .

In fact, metric projection and subgradient projection realize the
properties (a) and (b) if S is closed convex. So, why should we learn
more than that? The reasons are the following. There are many prob-
lems that cannot be solved solely with metric projection and/or subgra-
dient projection. There exist other mappings, satisfying the properties
(a) and (b), which can be used to solve such challenging problems.
The topic of this lecture, the fixed point theory, considers the family of
mappings that satisfy certain properties such as the ones (a) and (b)
mentioned above, and it greatly helps our understanding of the conver-
gence mechanism of iterative algorithms. In a nutshell, the fixed point
theory is sufficiently simple and very powerful. This is important more
than anything for us engineers.

If T satisfies the properties (a) and (b) above, S is obviously the set
of all fixed points, which is called the fixed point set of T . Importantly,
in this case, the fixed point theory ensures that S is closed convex. In
other words, unless S is closed convex, we can never realize the desired
properties (a) and (b). The point is how to construct T whose fixed
point set is identical to S. The applicability of metric projection is
governed by the shape of S (see Section 4.5 for the examples of “sim-
ple” closed convex sets). In the case that S is not simple, subgradient
projection is a reasonable alternative, as we have already seen in Lec-
ture 4. To enhance the accuracy of estimation, we may incorporate
more and more information about the estimandum, thereby focusing
the intersection in which we believe our target stays.

We start with two simple algorithms for convex optimization, the
projected gradient method and the projected subgradient method, fol-
lowed by an adaptive extension of the projected subgradient method.
Then we proceed to the fixed point theory of nonexpansive mapping.
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We conclude this lecture by providing links between the fixed point
theory and some of the iterative methods that we have presented.

5.3. Projected Gradient Method and Projected Sub-
gradient Method

Consider the following convexly constrained optimization:

(5.1) min
x∈K

ϕ(x)

where K ⊂ H is a closed convex set and ϕ : H → R a continuous
convex function. For differentiable convex functions, A. A. Goldstein
has invented the projected gradient method in 1964 [58, 59]:

(5.2) xk+1 := PK [xk − λ∇ϕ(xk)] , k ∈ N, for some x0 ∈ H,

where λ > 0 is the step size and ∇ϕ(xk) is the gradient of ϕ at xk.
If K := H (i.e., there is no constraint), then the projected gradient
method is reduced to the standard gradient method (the steepest de-
scent method), thus the projected gradient method is a generalization
of the gradient method.

In 1969, B. T. Polyak has shown that one can employ a subgradient,
rather than the gradient, for nondifferentiable convex functions under
certain conditions [60]. Specifically, he has invented the Projected Sub-
gradient Method (PSM):

(5.3) xk+1 :=





PK

(
xk − λk

ϕ(xk)

‖ϕ′(xk)‖2ϕ′(xk)

)
if ϕ′(xk) /= 0

xk otherwise

k ∈ N, where x0 ∈ K, λk ∈ (0, 2), and ϕ′(xk) ∈ ∂ϕ(xk). The conver-
gence of the projected gradient method and PSM will be discussed in
Section 5.10.

5.4. Adaptive Projected Subgradient Method

We repeat the NLMS update equation:

(5.4) hk+1 := hk − λ
〈uk, hk〉 − dk

‖uk‖2 uk, k ∈ N.

Comparing (5.3) and (5.4), we find NLMS having a similar structure to
PSM. Indeed, Fig. 3-4 suggests that NLMS attempts to minimize the
metric distance to the hyperplane Hk. Unlike the case of PSM, however,
the cost function dHk

seems to change from iteration to iteration. How
can we do with this time-varying cost function?
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In [61, 62], I. Yamada has formulated the problem as follows. Let
ϕk : H → [0,∞), k ∈ N, be a continuous convex function and K ⊂ H a
nonempty closed convex set. Then, the problem is formulated as min-
imizing the sequence of cost functions (ϕk)k∈N over K asymptotically.
We present the Adaptive Projected Subgradient Method (APSM) for the
asymptotic minimization problem and its convergence analysis below.

Theorem 5.5. Given an arbitrary initial vector h0 ∈ K, APSM gen-
erates the sequence (hk)k∈N as follows:

(5.6) hk+1 :=





PK

(

hk − λk
ϕk(hk)

‖ϕ′
k(hk)‖2ϕ′

k(hk)

)

if ϕ′
k(hk) /= 0

hk otherwise

where ϕ′
k(hk) ∈ ∂ϕk(hk) and λk ∈ [0, 2]. Assume the existence of

minimizer of ϕk over K; i.e., there exists x∗ ∈ K such that ϕk(x∗) =
ϕ∗

k := infy∈K ϕk(y). Then, the following statements hold.

(a) (Monotone approximation) Suppose that ϕk(hk) > ϕ∗
k, or equiv-

alently

(5.7) hk /∈ Ωk := argmin
x∈K

ϕk(x) /= ∅.

Then, for any λk ∈
(

0, 2

(
1 − ϕ∗

k

ϕk(hk)

))

(5.8)
∥∥∥hk+1 − ĥ

∗

k

∥∥∥ ≤
∥∥∥hk − ĥ

∗

k

∥∥∥ , ∀ĥ
∗

k ∈ Ωk.

Note that Ωk is the set of minimizers of ϕk over K. If in
particular the minimum is zero (i.e., ϕ∗

k = 0), then (5.8) holds
for any λk ∈ (0, 2).

(b) (Boundedness, asymptotic optimality) Assume the existence of
κ0 ∈ N such that there exists x∗ ∈ K satisfying ϕk(x∗) = 0,
∀k ≥ κ0, or in other words

(5.9) ϕ∗
k = 0, ∀k ≥ κ0, and Ω :=

⋂

k≥κ0

Ωk /= ∅.

Then, the sequence (hk)k∈N is bounded. Assume in addition
that the sequence of subgradients (ϕ′

k(hk))k∈N is bounded. Then,
for any λk ∈ [ε1, 2 − ε2] ⊂ (0, 2), k ∈ N,

(5.10) lim
k→∞

ϕk(hk) = 0.

(c) (Strong convergence, asymptotic optimality of the limit point)
Assume the existence of κ0 ∈ N such that (5.9) holds and the set
Ω has a relative interior with respect to a hyperplane Π ⊂ H;
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i.e., there exist h̃ ∈ Π∩Ω and εr.i. > 0 such that BΠ(h̃, εr.i.) :=

{x ∈ Π :
∥∥∥x − h̃

∥∥∥ < εr.i.} = B(h̃, εr.i.) ∩ Π ⊂ Ω.1 Then, for

any λk ∈ [ε1, 2 − ε2] ⊂ (0, 2), k ∈ N, the sequence (hk)k∈N

converges strongly to a point ĥ ∈ K; i.e.,

(5.11) lim
k→∞

∥∥∥hk − ĥ
∥∥∥ = 0.

Assume in addition (i) the boundedness of the sequence of
subgradients (ϕ′

k(hk))k∈N and (ii) the existence of a bounded
sequence of subgradients (ϕ′

k(ĥ))k∈N, where ϕ′
k(ĥ) ∈ ∂ϕk(ĥ).

Then,

(5.12) lim
k→∞

ϕk(ĥ) = 0.

(d) (Characterization of the limit point ĥ) Assume that all the con-
ditions in Theorem 5.5.c are satisfied. Assume in addition that
(i) the set Ω has an interior point h̃ (which is a slightly stronger
condition than the existence of a relative interior) and (ii) for
any ε > 0 and any r > 0, there exists δ > 0 such that

(5.13) inf
d(hk, lev≤0ϕk) ≥ ε,‚‚‚eh − hk

‚‚‚ ≤ r,

k ≥ κ0

ϕk(hk) ≥ δ.

Then, for any λk ∈ [ε1, 2 − ε2] ⊂ (0, 2), k ∈ N, the limit point
ĥ := limk→∞ hk ∈ K is characterized as

(5.14) ĥ ∈ lim inf
k→∞

Ωk,

where lim infk→∞ Ωk :=
⋃∞

k=0

⋂
n≥k Ωn.

5.5. Examples of APSM

To apply APSM to real-world problems, we only need to design the
sequence of cost functions (ϕk)k∈N. We present some examples below.

Example 5.15.

(a) (NLMS/APA) Define ϕk, k ∈ N, as the metric distance to the
linear variety Vk defined in (3.72):

(5.16) ϕk(x) := dVk
(x) := min

y∈Vk

‖x − y‖ , k ∈ N.

1The norm ‖·‖ can be arbitrary due to the norm equivalence for finite-dimensional
vector spaces.
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Then, we have

(5.17) ∂ϕk(x) 7 ϕ′
k(x) =






x − PVk
(x)

dVk
(x)

if x /∈ Vk

0 otherwise.

Substituting x := hk in (5.16) and (5.17), plugging the resul-
tant ϕk(hk) and ϕ′

k(hk) into (5.6), and letting λk := λ and
K := H (i.e., PK = I), we reproduce APA given in (3.69).
In particular, if r = 1, Vk is reduced to the hyperplane Hk in
(3.66), thus NLMS is reproduced. We remark that for the ϕk

in (5.16) the assumption of the existence of (relative) interior
is hardly satisfied, hence the convergence is not guaranteed in
general. A simple demonstration that shows NLMS not con-
verging is provided in [62].

(b) Let (C(k)
ι )ι∈Ik

, Ik ⊂ N, be a finite number of nonempty closed
convex sets to be processed at each iteration k ∈ N. Define ϕk,
k ∈ N, as a weighted squared distance as follows:

(5.18) ϕk(x) :=
∑

ι∈Ik

w(k)
ι d2

C
(k)
ι

(x), k ∈ N,

where w(k)
ι > 0 satisfies

∑
ι∈Ik

w(k)
ι = 1, k ∈ N. In this case, ϕk

is differentiable over H, thus ∂ϕk(x) = {∇ϕk(x)}, ∀x ∈ H,
with the derivative

(5.19) ∇ϕk(x) = 2
∑

ι∈Ik

w(k)
ι

(
x − P

C(k)
ι

(x)
)

.

Then, we can deduce the following algorithm:

(5.20) hk+1 := PK

[

hk + µk

(
∑

ι∈Ik

w(k)
ι P

C(k)
ι

(hk) − hk

)]

,

where µk ∈ [0,M(1)
k ] with the extrapolation coefficient

(5.21)

M(1)
k :=






∑
ι∈Ik

w(k)
ι

∥∥∥PC(k)
ι

(hk) − hk

∥∥∥
2

∥∥∥
∑

ι∈Ik
w(k)

ι P
C(k)

ι
(hk) − hk

∥∥∥
2 if hk /∈

⋂
ι∈Ik

C(k)
ι

1 otherwise.
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(c) Let Ik ⊂ N, (C(k)
ι )ι∈Ik

, and (w(k)
ι )ι∈Ik

be given as in Example
5.15.b. Define ϕk, k ∈ N, as a weighted distance as follows:

(5.22)

ϕk(x) :=






∑

ι∈Ik

w(k)
ι d

C
(k)
ι

(hk)

νk
d

C(k)
ι

(x) if νk :=
∑

ι∈Ik
w(k)

ι d
C(k)

ι
(hk) /= 0

0 otherwise.

In this case, ϕk is nonsmooth. We can show that applying
APSM to the ϕk in (5.22) yields the same algorithm as in (5.20)

with the range of step size extended as µk ∈ [0, 2M(1)
k ]. The

APSP algorithm in Section 4.11 is obtained by letting K := H
and C(k)

ι := H−
ι (hk). Theorem 4.67 is a direct consequence of

Theorem 5.5 with the ϕk defined as in (5.22). It can be verified
that the boundedness assumptions and the assumption (d)-(ii)
in Theorem 5.5 are automatically satisfied in this specific case.

5.6. Fixed Point and Classification of Mappings

APSM (Theorem 5.5) is motivated by the fixed point theory of nonex-
pansive mapping ; most of the results in the following can be founded
in [62–64] and the references therein. Studying the theory helps our
understanding of APSM as well as various iterative methods such as
POCS, the simultaneous projection methods, the projected gradient
method, PSM, etc.

Definition 5.23. Given a mapping T : H → H, a point x such that
T (x) = x is called a fixed point of T . The set of all fixed points is
called the fixed point set of T and denoted by

(5.24) Fix (T ) := {x ∈ H : T (x) = x}.

The following classification of mappings is employed.
Definition 5.25.

(a) A mapping T : H → H is said to be Lipschitz continuous over
H if there exists ν > 0 such that2

(5.26) ‖T (x) − T (y)‖ ≤ ν ‖x − y‖ , ∀x, y ∈ H.

The minimum ν satisfying (5.26) is called the Lipschitz con-
stant of T . A Lipschitz continuous mapping with its Lipschitz
constant ν is referred to shortly as ν-Lipschitzian. In particu-
lar, T is said to be

2The definition of Lipschitz continuity can be given in a general complete metric
space by replacing the norm of the difference between two points by their distance.
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(i) (strictly) contractive if (5.26) holds for ν < 1;
(ii) nonexpansive if (5.26) holds for ν = 1.
Contractive mapping is widely referred to as contraction map-
ping, and it is a subclass of nonexpansive mapping.

(b) Suppose that a mapping T : H → H has a fixed point; i.e.,
Fix (T ) /= ∅. Then, T is said to be quasi-nonexpansive (or
Fejér) if

(5.27) ‖T (x) − z‖ ≤ ‖x − z‖ , ∀x ∈ H, ∀z ∈ Fix (T ) .

The Lipschitz continuity is a sufficient condition for a function
to be continuous; note for any Lipschitz continuous mapping T that
‖x − y‖ → 0 implies ‖T (x) − T (y)‖ → 0. The following proposition
supports the applicability of quasi-nonexpansive mapping.

Proposition 5.28 ([62, 65]). Let T : H → H be a quasi-nonexpansive
mapping. Then, Fix (T ) has the following characterization:

(5.29) Fix (T ) =
⋂

y∈H

H−(y)

with

(5.30) H−(y) :=

{
x ∈ H :

〈
y − T (y), x − y + T (y)

2

〉
≤ 0

}
.

Proposition 5.28 implies that the fixed point set of any quasi-nonexpansive
mapping is closed convex, because the intersection of arbitrary collec-
tion of closed convex sets is closed convex (see Propositions 2.22 and
4.3). More precise classification of nonexpansive and quasi-nonexpansive
mappings is given below.
Definition 5.31.

(a) A mapping T : H → H is said to be averaged (or specifically α-
averaged) if there exists α ∈ (0, 1) and a (quasi-)nonexpansive
mapping TN : H → H such that

(5.32) T = (1 − α)I + αTN.

It holds that Fix (T ) = Fix (TN) since T (x) = x ⇔ TN(x) = x.
(b) A mapping T : H → H such that Fix (T ) /= ∅ is said to be

attracting if

(5.33) ‖T (x) − z‖ < ‖x − z‖ , ∀x ∈ H \ Fix (T ) , ∀z ∈ Fix (T ) .

In particular, an attracting mapping T is said to be strongly
attracting (or specifically η-attracting) if there exists an η > 0
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such that

‖x − z‖2 − ‖T (x) − z‖2 ≥ η ‖x − T (x)‖2 ,

∀x ∈ H, z ∈ Fix (T ) .(5.34)

Exercise 16. Show that T defined in (5.32) is automatically (quasi-
)nonexpansive if TN is (quasi-)nonexpansive.

The class of strongly attracting mappings (or averaged mappings)
is of significant importance as seen later. The relation between strongly
attracting mapping and averaged mapping is given below.

Proposition 5.35. For α ∈ (0, 1) and T : H → H, the following two
statements are equivalent [62].

(a) T is α-averaged with Fix (T ) /= ∅.
(b) T is (1 − α)/α-attracting.

Definition 5.36. A mapping T : H → H is said to be firmly (quasi-
)nonexpansive if it is 1/2-averaged (quasi-)nonexpansive.3

Proposition 5.37. Given a mapping T : H → H, the following three
statements are equivalent.

(a) T is firmly (quasi-)nonexpansive.
(b) 2T − I is (quasi-)nonexpansive.
(c) I − T is firmly (quasi-)nonexpansive.

By Proposition 5.35, a mapping T is 1-attracting if and only if it is
firmly (quasi-)nonexpansive with Fix (T ) /= ∅. Some remarks are given
below (see Fig. 5-1).
Remark.

(a) A nonexpansive mapping T is quasi-nonexpansive provided
that Fix (T ) /= ∅.

(b) An attracting mapping is quasi-nonexpansive but not necessar-
ily nonexpansive.

(c) A metric projection mapping PC : H → C for a nonempty
closed convex set C ⊂ H is firmly nonexpansive with Fix (T ) =
C (see Proposition 4.9).

(d) A subgradient projection mapping Tsp(f) relative to a contin-
uous convex function f : H → R with lev≤0f /= ∅ is firmly
quasi-nonexpansive with Fix

(
Tsp(f)

)
= lev≤0f . However, it is

not nonexpansive.

3An equivalent definition of firmly nonexpansive mapping is as follows: a map-
ping T : H → H is said to be firmly nonexpansive if ‖T (x) − T (y)‖2 ≤
〈x − y, T (x) − T (y)〉 , ∀x, y ∈ H.
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attracting

quasi-nonexpansive

nonexpansive

strongly attracting

metric
projection

subgradient
projection

PSfrag replacements

Fix (T ) /= ∅

Fix (T ) = ∅T : R → R : x *→ x + 1

Fig. 5-1. A classification of nonlinear mappings. The dashed line
classifies mappings according to whether having a fixed point.

Definition 5.38. A mapping T : H → H is said to be η-inverse
strongly monotone (or firmly monotone) over H if there exists η > 0
such that

(5.39) η ‖T (x) − T (y)‖2 ≤ 〈x − y, T (x) − T (y)〉 , ∀x, y ∈ H.

Proposition 5.40.

(a) Let φ : H → R ∪ {∞} be a differentiable convex function with
derivative ∇φ : H → H. Then, the following three statements
are equivalent [66, 67].
(i) ∇φ is ν-Lipschitzian over H.
(ii) ∇φ is 1/ν-inverse strongly monotone over H.
(iii) I − 2

ν ∇φ is nonexpansive over H.
(b) Given α ∈ (0, 1), T : H → H is α-averaged nonexpansive if and

only if its complement I − T is 1
2α -inverse strongly monotone

[68].

5.7. Fixed Point Theorems

The following theorem is one of the simplest results in the fixed point
theory.4

4Theorem 5.41 holds for a general complete metric space.
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Theorem 5.41 (Banach-Picard Fixed Point Theorem). Let T : H →
H be contractive (i.e., ν-Lipschitzian for ν < 1). Then

(a) T has a unique fixed point x∗ ∈ H.
(b) For any x ∈ H, limk→∞ T k(x) = x∗.

(c) For any x ∈ H,
∥∥T k(x) − x∗

∥∥ ≤ νk

1 − ν
‖x − x∗‖, k ∈ N.

Remark. Theorem 5.41 guarantees (a) the existence of the unique
fixed point of contraction mapping, and provides (b) an iterative method
to compute the fixed point and (c) its rate of convergence. Note that
the condition ‖T (x) − T (y)‖ < ‖x − y‖ , ∀x, y ∈ H, which is a nec-
essary condition to be contractive, is not sufficient to guarantee the
existence of a fixed point.

To present an extension of Theorem 5.41 to a more general class of
mappings, we prove the following.

Proposition 5.42. A contraction mapping T : H → H is averaged
nonexpansive. To be specific, if T is ν-Lipschitzian for ν < 1, then it
is α-averaged nonexpansive for any α ∈ [ 1+ν

2 , 1).

Proof: In general, T is α-averaged nonexpansive for α ∈ (0, 1) if and
only if TN := 1

αT − 1−α
α I is nonexpansive. By the Cauchy-Schwarz in-

equality and the definition of ν-Lipschitzian, we can verify the following
inequality for any x, y ∈ H:

(5.43) ‖TN(x) − TN(y)‖ ≤ (1 − α + ν)2

α2
‖x − y‖ .

Noting that 1 − α + ν > 0 and α > 0, we can verify that TN is nonex-
pansive if and only if α ≥ 1+ν

2 , hence T is α-averaged nonexpansive for
any α ∈ [1+ν

2 , 1). !

We mention that a contraction mapping T is also averaged (or
equivalently strongly attracting) quasi-nonexpansive as Fix (T ) /= ∅. In
contrast to contraction mapping, existence of a fixed point is not guar-
anteed in general for nonexpansive mapping (see Fig. 5-1). However,
under the assumption of the existence, Theorem 5.41 can be extended
as follows.

Theorem 5.44 ([69]). Let T : H → H be nonexpansive with Fix (T ) /=
∅. Also let (αk)k∈N ⊂ [0, 1] be a real-number sequence such that

∑∞
k=0

αk(1 − αk) = ∞. Then, for any initial point x0 ∈ H, the sequence
(xk)k∈N ⊂ H generated by

(5.45) xk+1 := (1 − αk)xk + αkT (xk), k ∈ N,

converges weakly to a point in Fix (T ).
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Corollary 5.46. Let T : H → H be averaged nonexpansive with
Fix (T ) /= ∅. Then, for any initial point x0 ∈ H, the sequence (xk)k∈N ⊂
H generated by

(5.47) xk+1 := T (xk), k ∈ N,

converges weakly to a point in Fix (T ).

Proof: Since T is averaged nonexpansive, there exists a nonexpan-
sive mapping TN : H → H and α ∈ (0, 1) such that T = (1−α)i+αTN.
Since

∑∞
k=1(1−α)α = ∞, Theorem 5.44 implies the weak convergence

of (xk)k∈N to a point in Fix (TN) = Fix (T ), which completes the proof.
!

The formula in (5.45) is commonly referred to as Mann iteration
or Krasnosel’skiĭ-Mann iteration [70, 71]. There exist several types of
theorems on the Mann iteration. Another version which is for quasi-
nonexpansive mappings is based on the following definition.

Definition 5.48. A mapping T : H → H is said to be demiclosed at
y ∈ H if

(a) weak convergence of (xk)k∈N ⊂ H to x ∈ H and
(b) strong convergence of (T (xk))k∈N ⊂ H to y

implies T (x) = y.

To show that a mapping is demiclosed, the following propositions
are useful.

Proposition 5.49. Let T : H → H be nonexpansive. Then I − T is
demiclosed at every point in H.

Proposition 5.50. Given a continuous convex function f : H → R,
suppose that lev≤0f /= ∅ and the set-valued mapping ∂f : H → 2H

is bounded in the sense that it maps bounded sets to bounded sets; 2H

stands for the collection of all subsets of H. Then I − Tsp(f) is demi-
closed at 0 ∈ H.

Theorem 5.51 ([72]). Let T : H → H be quasi-nonexpansive with
I − T demiclosed at 0 ∈ H. Also let (αk)k∈N ⊂ [ε1, 1 − ε2] for some
ε1, ε2 > 0. Then, for any initial point x0 ∈ H, the sequence (xk)k∈N

generated by (5.45) converges weakly to a point in Fix (T ).

5.8. Algebraic Properties of Quasi-Nonexpansive Map-
ping

The following proposition is quite useful to incorporate multiple pieces
of information in applications.
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Proposition 5.52. Let T1 : H → H and T2 : H → H be quasi-
nonexpansive mappings such that C := Fix (T1) ∩ Fix (T2) /= ∅. Then
a quasi-nonexpansive mapping T such that Fix (T ) = C can be con-
structed as follows.

(a) The mapping

(5.53) Ta := wT1 + (1 − w)T2, w ∈ (0, 1),

is quasi-nonexpansive with Fix (Ta) = C.
(b) If T2 is attracting, then

(5.54) Tb := T2T1

is quasi-nonexpansive with Fix (Tb) = C. In this case, Ta de-
fined in (5.53) is attracting quasi-nonexpansive.

(c) If T1 is η1-attracting and T2 is η2-attracting for some η1, η2 > 0,
then

(i) Ta defined in (5.53) is

(
(η1 + 1)(η2 + 1)

(1 − w)η2 + wη1 + 1
− 1

)
-attracting;

(ii) Tb defined in (5.54) is

(
η1η2

η1 + η2

)
-attracting.

(d) If T1 is α1-averaged and T2 is α2-averaged for some α1, α2 ∈
(0, 1), then5

(i) Ta defined in (5.53) is ((1 − w)α1 + wα2)-averaged;

(ii) Tb defined in (5.54) is
α1 + α2 − 2α1α2

1 − α1α2
-averaged.

(e) If T1 and T2 are nonexpansive, Ta and Tb defined in (5.53) and
(5.54), respectively, are nonexpansive with Fix (Ta) = Fix (Tb) =
C.6

Remark. Suppose for instance that we are given two (not necessarily
attracting) quasi-nonexpansive mappings T1 : H → H and T2 : H → H
such that C := Fix (T1) ∩ Fix (T2) /= ∅. Then, an averaged quasi-
nonexpansive mapping T such that Fix (T ) = C can be constructed
as

(5.55) T := (1 − α)I + αTa, α ∈ (0, 1),

with Ta defined as in (5.53). More specific examples will be given in
the following section.

5Proposition 5.52.d holds for general averaged (quasi-)nonexpansive mappings with-
out any assumption about fixed points [73].
6For any nonexpansive mappings T1 and T2 without any assumption about fixed
points, Ta and Tb are nonexpansive.

78 M. YUKAWA, ADAPTIVE FILTERING

5.9. Useful Mappings

The following design-tool mappings are useful to construct fixed point
iterations for practical applications.

Example 5.56.

(a) (Metric projection) Given a nonempty closed convex set C ⊂
H, PC : H → C is firmly nonexpansive with Fix (T ) = C;
equivalently PC is 1/2-averaged, and also 1-attracting (see Propo-
sition 5.35). Therefore, 2PC − I is nonexpansive, and T :=
(1 − α)I + α(2PC − I) = I + 2α(PC − I), α ∈ (0, 1), is α-
averaged nonexpansive.

(b) (Subgradient projection) Given a continuous convex function
f : H → R such that lev≤0f /= ∅, Tsp(f) is firmly quasi-
nonexpansive with Fix

(
Tsp(f)

)
= lev≤0f . Therefore, 2Tsp(f)−I

is quasi-nonexpansive, and T := I + 2α(Tsp(f) − I), α ∈ (0, 1),
is α-averaged quasi-nonexpansive.

(c) (Steepest descent) Let f : H → R be a differentiable con-
vex function with its derivative ∇f : H → H ν-Lipschitzian,
ν > 0, over H. Then λ∇f , λ > 0, is λν-Lipschitzian, thus
1
λν -inverse strongly monotone by Proposition 5.40.a. There-
fore, by Proposition 5.40.b, the complement I − λ∇f is λν

2 -
averaged nonexpansive, provided that λν

2 < 1.7 Namely, for
any α ∈ (0, 1), I − 2α

ν ∇f is α-averaged nonexpansive. Assum-
ing that there exists x ∈ H such that f(x) = infy∈H f(y),
Fix

(
I − 2α

ν ∇f
)

= argminx∈H f(x); see Proposition 4.41.

For instance, consider the convex feasibility problem with nonempty
closed convex sets (Ci)i∈I ⊂ H, I := {1, 2, · · · , n}, such that C :=⋂

i∈I Ci /= ∅. Define the proximity function

(5.57) p : H → [0,∞), x *→ 1

2

∑

i∈I

wid
2
Ci

(x),

where wi > 0 satisfies
∑

i∈I wi = 1. Then its derivative

(5.58) ∇p : H → H, x *→
∑

i∈I

wi(x − PCi
(x))

is known to be 1-Lipschitzian. Therefore, for any α ∈ (0, 1),

(5.59) T := I − 2α∇p

is α-averaged nonexpansive with Fix (T ) = C.
7This can also be verified by Proposition 5.40.a with the following observation:
I − λ∇f = (1 − λν

2 )I + λν
2

(
I − 2

ν ∇f
)
.
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5.10. Iterative Methods from Fixed Point Theoretic
Perspective

Example 5.60 (Methods Based on Mann Iteration).

(a) (Projected gradient method) Let K ⊂ be a nonempty closed
convex set and ϕ : H → R a differentiable convex function
with its derivative ∇ϕ : H → H ν-Lipschitzian, ν > 0, over
H. Then, by the discussion in Example 5.56.c, it can read-
ily verified I − λ∇ϕ, λ ∈ (0, 2

ν ), is λν
2 -averaged nonexpan-

sive. Since PK is 1/2-averaged nonexpansive, the composition
PK(I − λ∇ϕ) is 2

4−λν -averaged nonexpansive (see Proposition
5.52.d). Assume that the problem in (5.1) has a solution; i.e.,
argminx∈K ϕ /= ∅. In this case, for any λ ∈ (0, 2

ν ) [74]

(5.61) Fix (PK(I − λ∇ϕ)) = argmin
x∈K

ϕ.

Therefore Corollary 5.46 implies that, for any x0 ∈ H and any
λ ∈ (0, 2

ν ), the sequence (xk)k∈N generated by (5.2) converges
weakly to a solution x∗ that minimizes ϕ over K.

(b) (POCS) Let (Ci)i∈I ⊂ H, I := {1, 2, · · · , n}, be nonempty
closed convex sets such that C :=

⋂
i∈I Ci /= ∅. Then, for each

i ∈ I, Ti defined in (4.24) can be expressed as

(5.62) Ti := I + λi(PCi
− I) =

(
1 − λi

2

)
I +

λi

2
(2PCi

− I) .

Here the firm nonexpansivity of PCi
suggests nonexpansivity

of 2PCi
− I (see Proposition 5.37), implying that Ti is λi

2 -
averaged nonexpansive for any λi ∈ (0, 2). It is readily verified
that Fix (Ti) = Fix (2PCi

− I) = Fix (PCi
) = Ci. Therefore

the mapping T := TnTn−1 · · ·T1 is averaged nonexpansive with
Fix (T ) = C (see Proposition 5.52.d). Corollary 5.46 thus re-
produces the result in Theorem 4.25.

(c) (Parallel projection method [37, 75]) Let K ⊂ H and (Ci)i∈I ⊂
H, I := {1, 2, · · · , n}, be nonempty closed convex sets. We
consider the following hardly-constrained inconsistent convex
feasibility problem: find a point in K that least violates the
“feasibility” in the sense of being closest to all Cis. To be spe-
cific, the problem is to find a point that minimizes the prox-
imity function p defined in (5.57) over K. Assume that the
problem has a solution; i.e., argminx∈K p(x) /= ∅. Recall the
discussion in Example 5.60.a. Noting that the gradient ∇p is
1-Lipschitzian, it can easily be seen that, for any x0 ∈ H and
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any λ ∈ (0, 2), the sequence (xk)k∈N generated by

(5.63) xk+1 := PK

(

xk + λ

(
∑

i∈I

wiPCi
(xk) − xk

))

converges weakly to a solution x∗ ∈ Fix (PK(I − λ∇p)) =
argminx∈K p(x). In particular, letting K := H and assuming
C :=

⋂
i∈I Ci /= ∅, it follows that argminx∈K p(x) = C, thus

reproducing the result in Theorem 4.30. Theorem 4.32, which
is the case that the step size λ is replaced by λk ∈ [ε, 2 − ε] ⊂
(0, 2), can be addressed as follows. Let K = H, and observe

(5.64) I − λk∇p =

(
1 − λk

2

)
I +

λk

2
(I − 2∇p) .

Because I − 2∇p is nonexpansive (see Proposition 5.40.a) and

(5.65)
∞∑

k=1

(
1 − λk

2

)
λk

2
≥

∞∑

k=1

( ε

2

)2
= ∞,

Theorem 5.44 can be applied to reproduce Theorem 4.32.

Now we present the convergence theorem of PSM proved by B. T. Polyak
[60] below.

Theorem 5.66. Let ϕ : H → [0,∞) be a continuous convex function
and K ⊂ H a nonempty closed convex set. Assume that

(a) Ω := {x ∈ K : ϕ(x) = 0} /= ∅;
(b) for an arbitrarily fixed x0 ∈ K, there exist a constant c > 0

and x∗ ∈ Ω such that ‖ϕ′(x)‖ ≤ c for any x ∈ K satisfying
‖x − x∗‖ ≤ ‖x0 − x∗‖.

Then, for any λk ∈ [ε1, 2 − ε2] ⊂ (0, 2), ∀k ∈ N, the sequence (xk)k∈N

generated by (5.3) converges weakly to a point x∗ ∈ Ω (i.e., ϕ(x∗) = 0)
and it satisfies limk→∞ ϕ(xk) = 0.

Remark (Fixed point characterization of PSM). As lev≤0ϕ /= ∅, (5.3)
can be rewritten as follows:

xk+1 = PK

[
xk + λk

(
Tsp(ϕ)(xk) − xk

)]
(5.67)

= PK

[(
1 − λk

2

)
I +

λk

2

(
2Tsp(ϕ) − I

)]
(xk).(5.68)

Because Tsp(ϕ) is firmly quasi-nonexpansive with Fix
(
Tsp(ϕ)

)
= lev≤0ϕ,

2Tsp(ϕ) − I is quasi-nonexpansive, thus

(5.69) T̂k :=

(
1 − λk

2

)
I +

λk

2

(
2Tsp(ϕ) − I

)
, k ∈ N,
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is λk

2 -averaged (i.e., 2−λk

λk
-attracting) quasi-nonexpansive with Fix

(
T̂k

)
=

lev≤0ϕ. Since PK is 1-attracting nonexpansive with Fix (PK) = K,
PKT̂k is a composition of strongly attracting mappings (see Propo-
sition 5.52.c). Therefore, the assumption (a) in Theorem 5.66 can

be interpreted as assuming Fix (PK) ∩ Fix
(
T̂k

)
= K ∩ lev≤0ϕ /= ∅,

which actually coincides with Ω. Hence, PKT̂k is 2−λk

2 -attracting quasi-

nonexpansive with Fix
(
PKT̂k

)
= K ∩ lev≤0ϕ = Ω. This suggests that

the sequence (xk)k∈N generated by PSM has the following monotone
approximation property:

(5.70) ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 ≥ 2 − λk

2
‖xk − xk+1‖2 , ∀x∗ ∈ Ω.

Remark (Fixed point characterization of APSM). Assume lev≤0ϕk /=
∅, k ∈ N. Then, the APSM recursion in (5.6) can be expressed as
follows:

(5.71) hk+1 := PKT̂k(hk).

where

(5.72) T̂k :=

(
1 − λk

2

)
I +

λk

2

(
2Tsp(ϕk) − I

)
, k ∈ N.

Since Fix
(
T̂k

)
= Fix

(
Tsp(ϕk)

)
= lev≤0ϕk and Fix (PK) = K, we have

(5.73) Fix
(
T̂k

)
∩ Fix (PK) = lev≤0ϕk ∩ K.

Moreover, it is readily verified that lev≤0ϕk∩K /= ∅ if and only if Ωk /= ∅
and ϕ∗

k = 0 (see (5.7) and (5.9)). Assuming lev≤0ϕk ∩ K /= ∅, we have
Ωk = lev≤0ϕk ∩ K. Since PKT̂k is 2−λk

2 -attracting quasi-nonexpansive

with Fix
(
PK T̂k

)
= K ∩ lev≤0ϕk = Ωk, the sequence (hk)k∈N generated

by APSM satisfies
(5.74)∥∥∥hk − ĥ

∗

k

∥∥∥
2

−
∥∥∥hk+1 − ĥ

∗

k

∥∥∥
2

≥ 2 − λk

2
‖hk − hk+1‖2 , ∀ĥ

∗

k ∈ Ωk.

If in addition Ω :=
⋂

k≥κ0
Ωk /= ∅ for some κ0 ∈ N (see (5.9)), then for

k ≥ κ0

(5.75)
∥∥∥hk − ĥ

∗
∥∥∥

2
−
∥∥∥hk+1 − ĥ

∗
∥∥∥

2
≥ 2 − λk

2
‖hk − hk+1‖2 , ∀ĥ

∗
∈ Ω,

which implies that (hk)k≥κ0 is Fejér monotone with respect to Ω. The
property in (5.75) was used to prove the strong convergence of (hk)k∈N

in Theorem 5.5.c.
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6.1. Outline of Lecture 6

6.2. Introduction
6.3. Advances of APSM
6.4. Sparse adaptive filters
6.5. Variable-metric APSM
6.6. Nonlinear adaptive filters based on kernels
6.7. Adaptive learning over networks
6.8. Multi-domain adaptive filtering

6.2. Introduction

In this lecture, we provide several topics in adaptive filtering. First
we discuss about the advances of APSM, and then introduce sparse
adaptive filters. The variable-metric APSM is presented as a unified
framework encompassing the proportionate adaptive filtering algorithms
for the sparse adaptive filters. Adaptive learning with kernels is pre-
sented as a nonlinear extension of linear adaptive filters; some basics
of reproducing kernels are provided. We finally give brief discussions
about two other topics: distributed adaptive filtering and multi-domain
adaptive filtering.

6.3. Advances of APSM

As seen in Lecture 5, APSM minimizes a sequence of continuous convex
cost functions over a given closed convex set. How should we do however
if multiple convex constraints are imposed on our estimator? To be
specific, suppose that we have multiple closed convex sets Ki ∈ H, i =

83

84 M. YUKAWA, ADAPTIVE FILTERING

1, 2, · · · , m, to which the estimator hk ∈ H is required to belong. If the
constraints are consistent, i.e. K :=

⋂m
i=1 Ki /= ∅, then the composition

T := TmTm−1 · · ·T1 of the mappings Tis defined as in (5.62) is strongly
attracting nonexpansive with Fix (T ) = K. Therefore in such a case it
is desired to minimize a sequence of cost functions over Fix (T ) that is
the set of all points satisfying every constraint. In [76], APSM in (5.6)
has been extended to the following form:

(6.1) hk+1 :=





T

(

hk − λk
ϕk(hk)

‖ϕ′
k(hk)‖2 ϕ′

k(hk)

)

if ϕ′
k(hk) /= 0

T (hk) otherwise,

where T : H → H is strongly attracting nonexpansive. It has been
proven that Theorem 5.5 can be extended to (6.1) essentially with the
replacement of K by Fix (T ). We repeat that the metric projection
PK is strongly attracting (specifically 1-attracting) nonexpansive with
Fix (PK) = K. The above strategy is efficient when PKi

for each i can
be calculated explicitly but PK cannot.

How about the case that each projection PKi
cannot be calculated

explicitly? In such a case, the use of subgradient projection would
be an alternative. Since subgradient projection is strongly attracting
quasi-nonexpansive but not nonexpansive, the results in [76] are not
applicable directly. It has been proven that the results in [76] can
further be extended to the case that T is strongly attracting quasi-
nonexpansive [77].

Finally we give a remark on the case that the constraint set K of
APSM is a linear variety; this arises in a variety of applications such as
adaptive beamforming, blind multiple access interference suppression
in wireless communication systems, etc [78–80]. One may think that
Theorem 5.5 does not apply to this case, because the set Ω is a subset
of K hence does not have an interior point. However, in this case, we
can regard the underlying subspace of K as a Hilbert space; this has
been discussed in [81].

6.4. Sparse Adaptive Filters

In the first decade of the twenty first century, a significant amount
of attention has been paid to developing adaptive filtering algorithms
exploiting sparseness of the estimandum. Here, the estimandum h∗ is
said to be sparse when it has only a few coefficients different signifi-
cantly from zero (in other words it has many coefficients equal to, either
approximately or exactly, zero). There are basically two streams. One
is based on the proportionate adaptive filtering developed originally by
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D. L. Duttweiler in the year of 2000 [82]. Thereafter, a variety of
its improved versions have been proposed [83–88]. The other one is
motivated by compressed sensing [89–93]. A connection between the
proportionate adaptive filtering and compressed sensing has been dis-
cussed in [94]. Let us present the idea of those two steams one by one
below.

The original work of the proportionate adaptive filtering [82] is
based on the following idea. Consider the situation that we have no
a priori knowledge about the estimandum except that it is sparse. In
such a situation, a natural choice of the initial point would be the null
vector (i.e., h0 = 0). The sparseness of the estimandum suggests that
some coefficients of the filter should be corrected to a larger extent than
the other ones. This implies that it makes sense to assign an individual
step size to each coefficient of the filter in such a way that the step size
is proportional to the magnitude of the corresponding coefficient of
the estimandum. It has been reported that this idea results in faster
convergence with a slight increase of computational complexity. The
algorithm is given as follows:

(6.2) hk+1 := hk − λkek(hk)Gkuk, k ∈ N,

where Gk ∈ RN is a diagonal matrix whose diagonal entries are pro-
portional roughly to the magnitude of each coefficient of hk. To realize
the proportionality, h∗ is approximated by its instantaneous estimate
hk. It should be mentioned that a certain heuristic approach was used
to avoid each diagonal entry of Gk from becoming zero. Its normalized
version has been presented in [83]:

(6.3) hk+1 := hk − λk
ek(hk)

uT
k Gkuk

Gkuk, k ∈ N,

which is called the Proportionate Normalized Least Mean Square (PNLMS)
algorithm. It has been pointed out in [52] that PNLMS can be inter-
preted as an iterative projection method onto the same hyperplane Hk

as NLMS (see (3.66)) with respect to the time-variable metric induced
by the following inner product:

(6.4) 〈x, y〉G−1
k

:= xTG−1
k y, x, y ∈ R

N .

More details about this topic will be provided in Section 6.5.
The second stream is based on the minimization of cost functions

penalized by the )1-norm (or a weighted )1-norm), inspired by the
fact that the )1-norm promotes the sparsity of the solution unlike the
)2-norm. These methods basically involve another operation to pro-
mote the sparsity combined with the conventional adaptive filtering

86 M. YUKAWA, ADAPTIVE FILTERING

algorithms such as NLMS, APA, APSP, etc. Such additional opera-
tion includes the soft-thresholding (originally proposed for denoising by
D. L. Donoho in 1995 [95]) and the metric projection onto the weighted
)1-ball. The soft-thresholding operator is given as follows:

(6.5) Tst : R
N → R

N , x *→
N∑

i=1

sgn(〈x, ei〉) max{0, |〈x, ei〉|− ω}ei,

where ω > 0, the inner product is the standard one, ei ∈ RN denotes
the unit vector having only one nonzero element at the ith position,
and sgn : R → {−1, 0, 1} stands for the signum function that maps
a positive- and negative- valued number to 1 and −1, respectively,
and zero to zero itself. The metric projection onto the weighted )1-
ball requires O(N log2(N)) complexity, and its low complexity version
based on the subgradient projection has been presented in [96].

6.5. Variable-Metric APSM

A metric can be induced by an inner product 〈·, ·〉Q (see (6.4)). Note
here that Q ∈ RN×N must be positive definite in order that 〈x, y〉Q :=

xTQy, x, y ∈ RN , defines an inner product; see Lecture 2. In this
section, we refer to such Q as a metric for convenience. We explicitly
express the metric employed in defining the metric projection by the
superscript (·)(Q) such as P (Q)

C . Likewise, we express the metric em-
ployed in defining a subgradient projection by the superscript such as
T (Q)

sp(f). We define the variable-metric APSM as follows:

(6.6) hk+1 := P (Qk)
K

[
hk + λk(T

(Qk)
sp(ϕk)(hk) − hk)

]
, k ∈ N,

where λk ∈ [0, 2], ∀k ∈ N, and Qk ∈ RN×N is a positive definite matrix.
Here, as in the setup of APSM in Section 5.4, K ⊂ H is a closed convex
set and ϕk : H → [0,∞), k ∈ N, is a continuous convex function which
we assume to satisfy K∩ lev≤0ϕk /= ∅. We repeat that K∩ lev≤0ϕk /= ∅
if and only if ϕ∗

k = 0 and Ωk /= ∅, and in this case (see Section 5.10)

(6.7) Fix
(
P (Qk)

K

[
I + λk(T

(Qk)
sp(ϕk) − I)

])
= K ∩ lev≤0ϕk.

For any positive definite matrix A ∈ RN×N , we denote by σmin
A and

σmax
A the minimum and maximum eigenvalues of A, respectively.

Assumption 6.8.

(a) There exist δmin, δmax ∈ (0,∞) such that δmin < σmin
Qk

≤ σmax
Qk

<
δmax, ∀k ∈ N.
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(b) Let λk ∈ [ε1, 2 − ε2] ⊂ (0, 2), k ≥ K0, for ε1, ε2 > 0. Under
Assumption 6.8.a, there exist a positive definite matrix Q ∈
RN×N , K1 ≥ K0, τ > 0, and a closed convex subset Γ ⊆ Ω
such that the fluctuation matrix Ek := Qk − Q satisfies

‖hk+1 + hk − 2z∗‖2 ‖Ek‖2

‖hk+1 − hk‖2

<
ε1ε2σmin

Q δ2
min

(2 − ε2)2σmax
Q δmax

− τ,

(∀k ≥ K1 such that hk /∈ Ωk), ∀z∗ ∈ Γ.(6.9)

Here, for any matrix A ∈ RN×N ,

(6.10) ‖A‖2 := sup
x∈RN

‖Ax‖2

‖x‖2

=
√

σmax
ATA

denotes the spectral norm of A [8].

!

Intuitively, Assumption 6.8 requires small fluctuations of the metric
Qk around some fixed one Q. It has been proven in [97] that, if Γ has
an interior point under Assumption 6.8, we can extend Theorem 5.5
to the variable-metric scheme in (6.6). The key in the proof is that
Assumption 6.8 ensures the following for any z∗ ∈ Γ:

‖hk − z∗‖2
Q − ‖hk+1 − z∗‖2

Q ≥ τ

σmax
Q

‖hk − hk+1‖2
Q , ∀k ≥ K1.(6.11)

Letting Qk := G−1
k and ϕk(x) := d

(G−1
k

)
Hk

(x) := miny∈Hk
‖x − y‖G−1

k

in

(6.6), we can reproduce PNLMS in (6.3).
Interestingly, the classical RLS algorithm can also be seen as a

variable-metric projection method, as shown below. If we manipulate
(1.22), we obtain

(6.12) hk+1 := hk − λ̂k
ek(hk)

uT
k R−1

k uk

R−1
k uk,

where

(6.13) λ̂k := λku
T

k R−1
k uk =

uT
k R−1

k uk

uT
k R−1

k uk + γ
∈ (0, 1).

The algorithm (6.12) can be reproduced by letting Qk := Rk, ϕk(x) :=

d(Rk)
Hk

(x) := miny∈Hk
‖x − y‖Rk

, and λk :=
uT

k
R−1

k
uk

uT

k
R−1

k
uk+γ

in (6.6).

In addition to the above two algorithms, it has been shown in [97]
that the variable-metric APSM includes as its special examples the fol-
lowing four algorithms: (i) the LMS-Newton adaptive filter (LNAF)
[98–100], (ii) the quasi-Newton adaptive filter (QNAF) [101, 102],
(iii) the transform-domain adaptive filtering algorithm [103, 104], and
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(iv) the Krylov-proportionate adaptive filtering algorithm [105, 106].
The LNAF and QNAF algorithms are based on a similar spirit to RLS.
The transform-domain algorithm decorrelates colored inputs to attain
faster convergence. The Krylov-proportionate adaptive filtering algo-
rithm is based on the spirit of sparsifying the estimandum that is not
necessarily sparse, and it is an extension of the proportionate adaptive
filtering to nonsparse estimandum.

6.6. Nonlinear Adaptive Filters Based on Kernels

Nonlinear adaptive filters based on kernels have potentials to outper-
form linear ones. This section provides its rough idea together with
some basics of reproducing kernels.

6.6.1. Short Historical-Introduction to Reproducing Kernel
Hilbert Space

Positive definite kernels [107] have been proven a powerful tool in a
wide range of applications when a system of interest involves “nonlin-
earity” [108, 109]. The kernels are widely referred to also as Mercer
kernels (named after J. Mercer), reproducing kernels [110] etc.; unless
otherwise stated, we mean by kernels the positive definite kernels. The
key findings of particular importance is the so-called reproducing prop-
erty [110–114] together with the discovery of the existence of a Hilbert
space associated with each kernel, credited to E. H. Moore [112–114]
and N. Aronszajn [110].1 The space, of which the elements and the
inner product are both characterized by a kernel, is specially called
reproducing kernel Hilbert space (RKHS).

A remarkable feature of RKHS is that, although it may become of
infinite dimension, inner products can always be computed by simple
evaluations of the kernel function; this is known as kernel trick. An-
other one is the so-called representer theorem [115, 116] allowing us
to operate solely in a finite-dimensional subspace spanned by vectors
that are parametrized by patterns (data samples). This is of great im-
portance for engineering applications in which the computation time
is strictly limited, thus having motivated a considerable amount of re-
searches. Typical examples exploiting the RKHS theory include the
popular support vector machine, the Gaussian process regression, the
kernel principal component analysis, and the kernel Fisher discriminant
analysis, among others.

1The widely used term “metric projection” was firstly used by N. Aronszajn (and
K. T. Smith) in 1954 [15, p. 87].
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6.6.2. Kernels – Definition, Examples, Properties

Given nonempty set X , a mapping2 κ(·, ·) : X 2(:= X×X ) → R is called
a positive definite kernel if, for any m ∈ N∗ and any (xi, xj) ∈ X 2, the
m × m Gram matrix K with its (i, j) element Ki,j := κ(xi, xj) is
positive semidefinite; i.e.,

(6.14) aTKa ≥ 0, ∀a ∈ R
m,

where (·)T denotes transpose.

Example 6.15. (Positive definite kernels) We present celebrated ex-
amples of positive definite kernels when X := RN for some N ∈ N∗.

(a) Linear kernel:

(6.16) κ(x1, x2) := xT

1 x2, ∀x1, x2 ∈ X .

(b) Polynomial kernel:

(6.17) κ(x1, x2) := (α + xT

1 x2)
p, ∀x1, x2 ∈ X ,

where α ≥ 0 and p ∈ N∗.
(c) Gaussian (or radial basis function) kernel:

(6.18) κ(x1, x2) := exp

(
−(x1 − x2)T(x1 − x2)

2σ2

)
, ∀x1, x2 ∈ X ,

where σ > 0.
(d) Laplacian kernel:

(6.19) κ(x1, x2) := exp

(

−
√

(x1 − x2)T(x1 − x2)

σ

)

, ∀x1, x2 ∈ X ,

where σ > 0.

Lemma 6.20 (Properties of positive definite kernels).

(a) Nonnegativity: κ(x, x) ≥ 0 ∀x ∈ X .
(b) Symmetry: κ(x1, x2) = κ(x2, x1), ∀(x1, x2) ∈ X 2.
(c) Cauchy-Schwarz Inequality:

|κ(x1, x2)|2 ≤ κ(x1, x1)κ(x2, x2).

One may think that kernels have similar properties to inner prod-
ucts. From this point of view, kernels are considered as similarity
measures to quantify how close two vectors are to each other. A re-
markable difference is however that linearity does no longer hold. It
should be mentioned that X is not necessarily a vector space, thus the
existence of a null vector in X is not guaranteed [10]. Moreover, even
2Most part of the paper can easily be extended to complex-valued kernels κ(·, ·) :
X 2 → C; cf. [108].

90 M. YUKAWA, ADAPTIVE FILTERING

if there exists a null vector θ ∈ X , κ(x, x) = 0 /⇔ x = θ; for instance,
κ(θ, θ) = 1 if κ is a Gaussian (or Laplacian) kernel for a Euclidean
space X .

6.6.3. Reproducing Kernel Hilbert Space

We shall shortly describe a recipe for constructing a Hilbert space with
only the ingredients κ(·, ·) and X [110, 112–114]. The first step is to
define a mapping ψ that associates x ∈ X with κ(·, x), which can now
be considered as a function with a single argument (because the second
argument is already specified as x). In other words, ψ is a mapping
from X to the space of functions RX := {f : X → R}; i.e.,

(6.21) ψ : X → R
X , x *→ κ(·, x).

In the context of learning, X stands for the input space from which
the patterns (data samples) are taken. Every possible pattern x ∈ X is
mapped to its corresponding function ψ(x)(·) = κ(·, x). The goal of this
section is to construct a Hilbert space that contains all such functions;
the resulting space is widely called the feature space associated with ψ.

The second step is to construct a pre-Hilbert space (i.e., a vector
space equipped with an inner product). Taking the linear span of the
image of ψ, we can construct a vector space span {ψ(x) : x ∈ X}. Given
any pair of vectors in the space

f(·) :=
m∑

i=1

αiκ(·, xi), m ∈ N
∗, αi ∈ R, xi ∈ X

g(·) :=
n∑

j=1

βjκ(·, yj), n ∈ N
∗, βj ∈ R, yj ∈ X ,

we can define an inner product as follows:

(6.22) 〈f , g〉 :=
m∑

i=1

n∑

j=1

αiβjκ(xi, yj).

The operator 〈·, ·〉 satisfies the conditions of inner product, and it is
well-defined although the expansion coefficients of f and g could be
non-unique [108].

The final step is to turn the space into a Hilbert space. Defining
the induced norm as ‖f‖ :=

√
〈f , f〉 for any f in the space, we can

complete the space by adding all its limit points. The resultant space H
is called reproducing kernel Hilbert space (RKHS) due to the following
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properties.3 Given any f ∈ H, it is readily verified that

(6.23) f (x) = 〈f , κ(·, x)〉 , ∀x ∈ X ,

which is called the reproducing property.4 In particular, for any x1,
x2 ∈ X ,

(6.24) 〈ψ(x1), ψ(x2)〉 = 〈κ(·, x1), κ(·, x2)〉 = κ(x1, x2).

This implies that inner products of elements in the high (possibly in-
finite) dimensional space H can be obtained through simple computa-
tion, which is called kernel trick. The following fact is of particular
importance for kernel learning.

Theorem 6.25 (Representer Theorem [115, 116]). An empirical loss
function is generally a function of a collection of triplets {(xi, yi, f(xi))}q

i=1
⊂ X × R × R, where f(xi) is an estimate/hypothesis of the ith output
yi based on the ith input xi (f ∈ H). It is well-known that learning
based on minimization of a loss function often causes over fitting.5 A
common strategy to overcome the over fitting problem is to minimize a
loss function penalized with a regularization term,6 which can usually
be written as Ω(‖f‖) with a strictly monotonically increasing function
Ω : [0,∞) → R. Namely, a widely used cost function to be minimized
is the regularized risk functional

ϕ(f ) := ) ((x1, y1, f(x1)), · · · , (xq, yq, f(xq))) + Ω(‖f‖),

where ) : (X × R × R)q → R ∪ {∞} is an arbitrary loss function.
It is clear that f can be decomposed as f = fM + fM⊥ , where

fM ∈ M := span(κ(·, x1), · · · , κ(·, xq)) and fM⊥ ∈ M⊥ (M⊥ de-
notes the orthogonal complement of M ; H = M ⊕ M⊥). Since fM⊥

is orthogonal to all κ(·, xi)s, fM⊥(xi) = 〈fM⊥, κ(·, xi)〉 = 0, thus
f(xi) = fM(xi), ∀i = 1, 2, · · · , q. This means that fM⊥ does not
affect the loss function. Moreover, as Ω is strictly monotonically in-
creasing, fM⊥ should be chosen in such a way that ‖f‖ is minimized.
Noticing that fM = PM(f ) and fM⊥ = PM⊥(f ), the Pythagorean the-
orem tells us ‖f‖2 = ‖fM‖2 + ‖fM⊥‖2, which is minimized by letting
fM⊥ = 0. This indicates the important consequence: the minimizer f ∗

3It is interesting to see that Volterra and Wiener series can be represented implicitly
as elements of a RKHS by using polynomial kernels (see, e.g., [117]).
4In [110], RKHS is characterized by the properties (6.23) and κ(·, x) ∈ H, ∀x ∈ X .
5The learner tends to fit a training data set well but not to be generalized to a test
data set.
6The underlying philosophy is to constrain f to be chosen from a subclass of H,
based on the Vapnik-Chervonenkis theory [118].
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of ϕ(f) satisfies f ∗ ∈ span(κ(·, x1), · · · , κ(·, xq)), which is known as
the representer theorem in the machine learning community.

6.6.4. Online Learning with Kernels

The success of the kernel methods in batch settings has motivated
the study of online learning with kernels [53, 54, 119–123]. A linear
adaptive filter hk ∈ RN is expressed as a linear combination of past
input vectors (ui)i≤k−1 and an initial estimate h0; i.e.,

(6.26) hk =
k−1∑

i=0

α(k)
i ui + h0, k ∈ N,

where α(k)
i ∈ R is updated by an adaptive algorithm. The filter hk ∈

RN processes a new input vector uk linearly as

(6.27) 〈hk, uk〉 =
k−1∑

i=0

αi 〈ui, uk〉 + 〈h0, uk〉 , k ∈ N,

where 〈·, ·〉 denotes the standard inner product. A nonlinear adaptive
filter based on kernels takes the following form:

(6.28) f k(·) :=
k−1∑

i=0

α(k)
i κ(·, ui) + f 0(·), k ∈ N,

where α(k)
i ∈ R is updated by an adaptive algorithm. The filter f k ∈ H,

where H denotes the RKHS associated with the kernel κ(·, ·), processes
a new input vector uk nonlinearly as

(6.29) f k(uk) = 〈fk, κ(·, uk)〉 :=
k−1∑

i=0

α(k)
i κ(uk, ui) + f0(uk), k ∈ N.

Compare the linear and nonlinear processing in (6.27) and (6.29) from
the computational viewpoint. In (6.27), the left hand side can be
directly evaluated by N multiplications since the N components of
hk ∈ RN are available. The computational costs and the memory
requirements for the processing are therefore constant; note that the
memory requirements to update the filter coefficients depend on algo-
rithms. On the other hand, f k is a function and one needs to evaluate
the right hand side of (6.29). Namely, one needs to (i) store the coeffi-

cients (α(k)
i )k−1

i=0 ⊂ R and input vectors (ui)
k−1
i=0 ⊂ RN and (ii) compute

κ(uk, ui) multiplied by α(k)
i for every i ∈ {0, 1, · · · , k − 1} as well as

f0(uk). Both the computational costs and the memory requirements
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for the processing may thus grow linearly as time goes by. This ob-
viously conflicts with the limitations of memory and computational
resource/time. Several sparsification techniques have been proposed
and investigated for dynamically updating the dictionary, a subset of
input vectors (or basis vectors), in such a way that only dominant ones
remain among all the input vectors (ui)

k−1
i=0 ⊂ RN . A simplest spar-

sification strategy exploited in [119] is to use a fixed number, say q,
of the newest data (ui)

k−1
i=k−q. More sophisticated strategies have been

proposed in [53, 54, 120–123]. In the following, we do not consider
sparsification for simplicity.

As H is a (possibly infinite dimensional) Hilbert space, the adap-
tive filtering algorithms developed for linear filters can naturally be
extended to nonlinear filters. For instance, the NLMS algorithm in H
is given by

(6.30) f k+1 := f k + λ (PHk
(fk) − fk) , k ∈ N,

where

(6.31) Hk := {f ∈ H : 〈f , κ(·, uk)〉 = f (uk) = dk}.

Since the normal vector of Hk is κ(·, uk), each coefficient α(k)
i corre-

sponding to each κ(·, ui), i ∈ N, is updated only once at time i by the
algorithm (6.35). In [53, 54], APSM (which is formulated in a general
Hilbert space) has been applied to the adaptive learning in RKHS.

There is another possibility to construct a nonlinear adaptive filter-
ing algorithm based on NLMS. From (6.29), the coefficients (α(k)

i )k
i=0

should be updated in such a way that

(6.32) αT

k+1κk = dk − f0(uk),

where

αk+1 :=[α(k+1)
0 , α(k+1)

1 , · · · , α(k+1)
k ]T ∈ R

k+1(6.33)

κk :=[κ(uk, u0), κ(uk, u1), · · · , κ(uk, uk)]
T ∈ R

k+1.(6.34)

Thus, the coefficient vector αk can be updated as follows:

(6.35) αk+1 := α̃k + λ
(
P eHk

(α̃k) − α̃k

)
, k ∈ N,

where α̃k := [αT
k , 0]T ∈ Rk+1 and

(6.36) H̃k := {α ∈ R
k+1 : αTκk = dk − f0(uk)}.

We finally mention that the kernelized adaptive filters looks more com-
plex than the linear ones, but it is simpler in the sense that the filter
can be expressed with a smaller number of data samples. Linear and
nonlinear adaptive learning with projections is reviewed in [124].
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6.7. Adaptive Learning over Networks

We consider the situation where multiple sensors are employed to col-
lect data, and the sensors are linked partially and are able to communi-
cate with each other according to some prescribed mode of cooperation.
The modes of cooperation are classified into two categories: the incre-
mental mode and the diffusion mode. In the incremental mode, the
sensors (i.e., the nodes in a network) are activated in a cyclic pat-
tern; each node processes its local information with the information
transferred from the previous node, and transfers the processed data
to the next node [125, 126]. This mode consumes a small amount of
power and suits for a small network. In the diffusion mode, on the
other hand, each node processes its local information with the infor-
mation transferred from its neighboring nodes in parallel, and transfers
the processed data to a subset of its neighbors [127–130]. This mode
is suitable for a large network and it can easily deal with changing
topologies, node failures, etc. In [56], APSM has been extended to
the adaptive learning in diffusion networks. Probabilistic diffusion is
one of the interesting topics in this research area, changing the net-
work topologies randomly for attaining significant gain with the lowest
possible communication costs [131].

6.8. Multi-Domain Adaptive Filtering

Consider the following scenarios.

(a) The amount of data observable at a measuring equipment (such
as a sensor) is strictly limited due to practical reasons. In
such a case, one may need to gather and process a priori and
measurable information in all the possible domains (e.g. time,
frequency, space by means of multiple sensors, etc.) to com-
pensate for the lack of information.

(b) There are many requirements from a variety of aspects such as
high-performance, low power-consumption, harmless to human
bodies, desirable specification in frequency domain, etc.

In such scenarios as above, each piece of information is associated with
a closed convex set in each individual domain and, if we consider feasi-
bility solely in a specific domain (let us call it basic domain), the closed
convex sets in other domains should be pulled into the basic domain.
Metric projection is a useful tool in the set-theoretic adaptive filtering
and, for computing the projections onto the sets efficiently, the ‘shapes’
of the sets should be significantly simple. Each set usually has a sim-
ple ‘shape’ in the individual domain, but once pulled into the basic
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domain, there is no guarantee that its shape remains simple. If we
stick to the conventional one-domain feasibility approach, the projec-
tion methods lose its computational efficiency. The idea of feasibility
splitting —dealing with feasibility in each individual domain— is quite
useful to preserve the computational efficiency. Its original notion has
been presented in [132–135], and it has been successfully extended to
adaptive scenarios with the framework of APSM in [57, 136].
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