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Abstract

This thesis presents efficient techniques to achieve the following objective: develop
an efficient adaptive filtering algorithm that enjoys (i) fast and stable convergence
and (ii) good steady-state performance with (iii) low computational complexity
[more precisely, linear computational complexity]. The term ‘stable’ here stands
for robustness against corrupted noise and/or possible nonstationarity of envi-
ronments. The efficacy of the proposed techniques is verified in applications to

acoustic and communication systems.

Firstly, a family of efficient linearly-constrained adaptive filtering algorithms
is presented; the family is named Adaptive Parallel Constrained Projection (A-
PCP) method. Two efficient blind adaptive algorithms, which belong to A-PCP,
are proposed for Multiple Access Interference (MAI) suppression in DS/CDMA
wireless communication systems. The proposed algorithms utilize rough estimates
of an amplitude and transmitted bits of a desired user. Due to the embedded
constraint and parallel structure, the proposed algorithms realize fast and stable

convergence and low bit error rate at steady-state with linear order complexity.

Secondly, Pairwise Optimal Weight Realization (POWER), an efficient adap-
tive weighting technique for the adaptive-PSP algorithm, is presented. The
POWER technique employs the projection onto the intersection of two closed
half-spaces as a basic tool for an efficient approximation of an ideal direction of
update. The weights realized by POWER turn out to be optimal in the sense of
(i) pairwise and (ii) worst-case optimization. The proposed algorithm enjoys fast
and stable convergence and good steady-state performance while keeping linear

complexity.

Thirdly, an efficient Stereophonic Acoustic Echo Cancellation (SAEC) scheme

is presented, based on two key ideas. The first idea is simultaneous use of data



from multiple input-states provided by preprocessing. The second idea is to em-
ploy POWER in an efficient manner for further acceleration while keeping linear
computational complexity. In fact, the POWER technique turns out to exert far-
reaching effects in the SAEC problem. The proposed technique exhibits excellent
convergence and tracking behavior after a change of the echo paths in extensive
simulations.

Finally, a family of very flexible adaptive algorithms based on quadratic-metric
is presented. Following two adaptive algorithms with metrics constant in time, an
algorithm with a variable metric is presented. One of the constant-metric algo-
rithms is based on the parallel projection onto data-dependent closed convex sets,
thus it is named Adaptive Parallel Quadratic-metric Projection (APQP) algorithm.
The other constant-metric algorithm selectively utilizes critical ones among those
convex sets based on a simple min-max criterion, thus it is named Adaptive Parallel
Min-maz Quadratic-metric Projection (APMQP) algorithm. The variable-metric
algorithm is named Adaptive Parallel Variable-metric Projection (APVP) algo-
rithm, being a natural extension of APQP. The efficacy of the proposed algorithms
is verified in the acoustic echo canceling application.

The techniques developed in this thesis are based on the framework of Adaptive
Projected Subgradient Method (APSM) [Yamada et al., 2003], which generates a
solution (a sequence of adaptive filtering vectors) to the following formulation:
minimize asymptotically a sequence of nonnegative convex objective functions
over a closed convex subset of a real Hilbert space. APSM has been proven to
have the following properties: monotone approximation, asymptotic optimality,
strong convergence etc. The proposed techniques are of course endowed with those
remarkable properties. The consequence of this thesis supports the applicability

of APSM to real-world signal processing problems.



Chapter 1
General Introduction

My Ph.D. study has been devoted to pursue an efficient adaptive filtering algo-
rithm that enjoys (i) fast and stable convergence and (ii) good steady-state per-
formance with (iii) low computational complexity [more precisely, O(N), where
N is the length of adaptive filter]. The term ‘stable’ here stands for robustness
against corrupted noise and/or possible nonstationarity of environments. This
study yields various techniques, to achieve the above goal, of which the efficacy
is verified in applications to acoustic and communication systems. This short
chapter provides with an outline of the fruits of this study. Let us first look back
briefly at the history of adaptive filtering algorithms developed over the last half
a century (See, e.g., [56,97] for more details).

1.1 RLS and LMS

In the middle of 20 century, two classical adaptive filtering algorithms have been
invented: the Recursive Least Squares (RLS) algorithm' by Plackett (1950) [91]
and the Least Mean Square (LMS) algorithm by Widrow and Hoff (1960) [122].
Although it has widely been adopted in commercial products because mainly of
its stability and computational simplicity [O(NN)], the LMS algorithm suffers from
slow convergence. On the other hand, the RLS algorithm has relatively fast con-

vergence property and is insensitive to the variation of eigenvalue spread of the

LAlthough the original work of the RLS algorithm is often credited to Plackett in modern
times, it is mentioned in some literature that Gauss in the late of 18 century had already
formulated the recursive least squares solution (see e.g., [97, § 11.7, § 12.6]).
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auto-correlation matrix of input signal (unlike LMS). However, RLS often suffers
from instability especially for nonstationary input signal (see, e.g., [53], [56, §9.9])
and requires high computational complexity [O(N?)]. The regularization tech-
nique [114], also called diagonal loading in adaptive beamforming [19], alleviates
the instability issue at the cost of O(N?3) computational complexity. To reduce the
computational complexity of RLS, simplified versions, called Fast-RLS (FRLS),
have been proposed by Ljung, Morf, and Falconer (1978), Carayannis, Manolakis,
and Kalouptsidis (1983), and Cioffi and Kailath (1984) [18,23,72]. It has been
pointed out that FRLS suffers from intrinsic instability (see [50] and the references
therein). A great deal of effort has been devoted to stabilize FRLS with a moderate
increase of computational complexity [7, 14, 40,82, 83,105]. In particular, the Fast
Newton Transversal Filters (FNTF), proposed by Moustakides and Theodoridis
(1991) [83], is a class of efficient adaptive estimation algorithms, being an efficient
extension of the method in [18]. Unfortunately, even if we employ the existing
stabilized versions, the filter has a risk of divergence, and thus, monitoring and
reinitialization are always required [11, p. 77], [14,82,105], [42, p. 40]. Numeri-
cal instability still remains as a common issue to overcome in the RLS-type algo-
rithms. One of the other remaining issues in RLS is that there are situations where
RLS has tracking inferiority to LMS [35,57], [97, pp. 383]. To overcome these is-
sues, adaptive controlling techniques of forgetting factor, a parameter governing
the estimates of statistics, have been studied (see, e.g., [36, 71,104,106, 109, 115]).
Nevertheless, there still remain some issues due mainly to its dependency on es-
timates of statistical information. The previous extensive studies on RLS suggest
that the simple LMS-type algorithms (which relies not on such statistics but just on
instantaneous measurements) will be playing a central roll in nonstationary signal
processing applications. Let us now switch our focus to the LMS-type algorithms.

The LMS algorithm iteratively generates the sequence of adaptive filtering
vector (hy)ren C RY by the following recursion (k: iteration number): hy ; =
hy — Arer(hg)ug, where \; is a small positive constant called step size, uy € RN
the input vector, and ey(h) := uj h — dy € R, Yh € RV, with the observable out-
put data dy € R. Since the amount of update depends on input energy (i.e., ||ul|),
a very small step size should be used to prevent divergence, resulting in very slow
convergence. To improve the convergence speed, the Normalized LMS (NLMS) al-
gorithm has been proposed by Nagumo and Noda (1967) [84], Albert and Gardner
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ek(hk)'u,k
[l
Ak € [0,2] (Other ways of normalization have also been proposed; see [97] and the

(1967) [1], where the amount of update is normalized as hy 1 := hp— g

references therein). This simple modification not only allows us to use larger step
size but also gives us an interesting geometric interpretation in the space of filter-
ing vector. Namely, the NLMS algorithm can be interpreted as an iterative relazed
projection (exact metric projection if A\, = 1) onto data-dependent hyperplanes
on which the output error is zero. Mathematically, the update equation of NLMS
can be rewritten as hgiy := hy + \g [Py, (hi) — hi], where Pp, (hy) denotes the
projection of hy onto the hyperplane Hy := {h € RY : ¢;(h) = 0}. Thus it
is categorized into a family of projection-based algorithms. However, when the
auto-correlation matrix F(u,ul) (E: expectation, superscript T: transposition)
has spreading eigenvalues (i.e., the input signal is highly colored), the normal vec-
tors of the hyperplanes which are defined with data obtained within a short period
are close to each other. This causes slow convergence of NLMS for highly colored
input signals [15, 50], although NLMS is robust against noise (which is supported
by the H* theory [54, 55]).

To raise the convergence speed of NLMS, the Affine Projection Algorithm
(APA) has been proposed by Hinamoto® and Maekawa (1975) [58], Ozeki and
Umeda (1984) [89]. The basic idea is to replace the hyperplane Hy by the linear
variety Vj, := ﬂf:kfrﬂ
The update equation of APA can be written as hyy1 := b+ A, [Py, (i) — hg]. To

H;, where (0 <)r € N is recently called data reusing factor.

analyze the convergence property of APA, a lot of effort has been done (see e.g.,
[93,95,103,116]). In noiseless situations, the vector sequence generated by APA
monotonically approaches (by Pythagorean theorem) an estimandum h*(€ Vj), a
system to be estimated. In practically noisy situations, however, probability that
h* belongs to Vj is approximately zero for » > 3, which clearly explains the noise
sensitivity of APA [129]. To reduce the computational complexity, a simplified
version, called Fast Affine Projection (FAP) algorithm, has been proposed by Gay
and Tavathia (1995) [43]. Unfortunately, however, FAP keeps the noise sensitivity
problem unsettled. All the aforementioned algorithms utilize linear operators as

their basic tools.

2Although, in most literature, APA is credited to Ozeki and Umeda, the original idea has
been given by Hinamoto and Maekawa [58].
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The history gives us a question: “Is the linearity necessary to deal with chal-
lenging problems in adaptive filtering?”. In this study, convexity, an important

special case of nonlinearity, is a key rather than linearity.

1.2 This Study

The techniques developed in this study are based on the framework of Adap-
tive Projected Subgradient Method (APSM) proposed by Yamada et al. (2003)
[124,126], in which a fairly new formulation has been established: minimize asymp-
totically a sequence of nonnegative convex objective functions (O)ren over a
closed convex subset C' of a real Hilbert space H. APSM reproduces various
projection-based algorithms such as NLMS [1,84], APA [58,89], set-membership
NLMS/APA [51,121], constrained NLMS/APA [27,28,67] (in the embedded sense
[124,126]), adaptive Parallel Subgradient Projection (adaptive-PSP) [129,135],
embedded-constraint parallel projection [132] algorithms. Thus, APSM, as a side
effect, provides a substantial framework to understand a wide range of set-theoretic
adaptive filtering algorithms in a unified fashion. Chapter 2 provides notation
employed throughout this thesis, and briefly introduces APSM with a significant
extension by Slavakis et al. [99,100].

Chapter 3 presents a family of novel linearly-constrained adaptive filtering al-
gorithms; the family is named Adaptive Parallel Constrained Projection (A-PCP)
method. Two efficient blind adaptive algorithms, which belong to A-PCP, are
proposed for Multiple Access Interference (MAI) suppression in DS/CDMA wire-
less communication systems. Due to the embedded constraint and the parallel
structure, the proposed algorithms realize fast and stable convergence and low Bit
Error Rate (BER) at steady-state with linear order complexity. The proposed al-
gorithms utilize rough estimates of an amplitude and transmitted bits of a desired
user. To clarify the advantage of the proposed algorithms over the conventional
methods, a geometric interpretation as well as simulation results is provided. The
simulation results demonstrate that the proposed algorithms attain approximately
10 times faster convergence than the conventional blind algorithms [67,90] and,

simultaneously, BER performance close to the (suboptimal) linear filter.

Chapter 4 presents an inventive idea for further acceleration of an efficient
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adaptive filtering algorithm, named the adaptive-PSP algorithm [129], by optimiz-
ing the weighting parameters in a pairwise fashion, while keeping its computational
efficiency. Adaptive-PSP utilizes, at each iteration, multiple, say ¢ € N\ {0},
closed half-spaces H (hg), -+, H, (hi) (1; < k, Vj = 1,2,---,q) that contain
h* with high probability even in noisy situations. Hence, monotonicity is highly
expected to hold, opening a pathway to resolution of the noise sensitivity problem.
Uniform weights have commonly been used in adaptive-PSP mainly for simplicity,
which suggests that further improvements of convergence could be achieved by
establishing an effective weight design. To bring out the potential of the adaptive-
PSP algorithm aggressively but without losing its computational efficiency, an
efficient adaptive weighting technique named Pairwise Optimal Weight Realiza-
tion (POWER) is proposed. The POWER technique employs the projection onto
the intersection of two closed half-spaces as a basic tool for an efficient approx-
imation of an ideal direction of update. The weights realized by POWER turn
out to be optimal in the sense of (i) pairwise and (ii) maximum minimization.
The proposed algorithm enjoys fast and stable convergence and good steady-state
performance while keeping linear complexity.

Chapter 5 presents a class of efficient fast adaptive filtering algorithms for
Stereophonic Acoustic Echo Cancellation (SAEC) problem, which is a central issue
when we design high-quality, hands-free and full-duplex systems (e.g., advanced
teleconferencing etc.) [8,11,13,16,34,37,42,44,45,65,107,108,111]. The SAEC
problem has received significant attention because there exists a structural prob-
lem caused by high cross-correlation between two input signals observed at two
microphones. To decorrelate the input signals, a great deal of effort has been de-
voted to devise preprocessing of the inputs [2,12, 13,46, 47,49, 60, 66, 98,108, 112].
The remaining major challenges in SAEC with preprocessing are twofold: (i) fast
tracking of the echo paths and (ii) low computational complexity due to the ne-
cessity to adapt 4 echo cancelers with a few thousands taps [42]. The first idea
is simultaneous use of data from multiple input-states provided by preprocessing
[138]. The second idea is to employ POWER in an efficient manner for further
acceleration while keeping linear computational complexity [134]. In fact, the
POWER technique turns out to exert far-reaching effects in the SAEC problem.
The proposed technique exhibits excellent convergence and tracking behavior after

a change of the echo paths in the extensive simulations.
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Chapter 6 presents a family of very flexible adaptive algorithms based on
quadratic-metric. First, two adaptive algorithms in which the metric is constant
in time are presented. One is based on the parallel projection onto data-dependent
closed convex sets, thus it is named Adaptive Parallel Quadratic-metric Projection
(APQP) algorithm. The other selectively utilizes critical ones among those convex
sets based on a simple min-max criterion, thus it is named Adaptive Parallel Min-
mazx Quadratic-metric Projection (APMQP) algorithm. These two algorithms are
naturally derived by employing quadratic-norms in the APSM. Secondly, although
the ‘constancy’ in the metric design is crucial to ensure important properties such
as asymptotic optimality, a more general form of APQP where the metric itself
changes in time is presented. In other words, the algorithm is based on variable-
metric, thus it is named Adaptive Parallel Variable-metric Projection (APVP)
algorithm. The proposed algorithms (APQP/APMQP/APVP) has the valuable
monotone property. By employing an efficient metric, the overall computational
complexity of the proposed algorithms is kept linear with respect to (w.r.t.) the
filter length. The efficacy of the proposed algorithms is verified by simulations in
the acoustic echo canceling application.

Chapter 7 concludes this thesis with some remarks.



Chapter 2
Preliminaries

Throughout the thesis, the following notation is used. Let R, N, and N* denote the
sets of all real numbers, nonnegative integers, and positive integers, respectively.
Vectors (matrices) are represented by bold-faced lower-case (upper-case) letters.
The identity and zero matrices are denoted by I and O, respectively. For any
matrix A, the A" stands for the transposition of A. A real Hilbert space H
equipped with an inner product (-,-) will be denoted by (#, (-,-)). Its induced
norm is given by ||z|| := (z,2)"?, V& € . The Euclidean space RY (N € N*) is
the simplest finite-dimensional Hilbert space, which is often the stage in practical
applications. The notation |S| stands for the cardinality of a set S.

Given v € H (H: real Hilbert space) and a closed subspace M C H, the
translation of M by v defines the linear variety V := v+ M = {v+m :m € M}.
If dim(M*Y) = 1, V is called a hyperplane, which can be expressed as (V =)II =
{x € H : (a,z) = c} for some (0 #)a € H, and ¢ € R. Here, for any linear
subspace M C H, M+ C H is defined as M+ :={x € H : (x,m) =0, Ym € M}.
I :={x € H: (a,z) <c}is called a closed half-space with its boundary II.

A set C' C H issaid to be converif ve+(1—v)y € C,Ve,y € C,Yv € (0,1). A
function © : H — R is said to be converif O(ve+(1—v)y) < vO(x)+(1-v)O(y),
Ve,y € H, Vv € (0,1).

Given a mapping T : H — H, Fix(T) := {y € H : T(y) = y} is called the
fixed point set of T. A mapping T is said to be nonexpansive if ||T(x) — T'(y)|| <
le —yl|, Ve,y € H. If, in addition, Fix(T) # () and there exists n > 0 such
that (s.t.) nlle —T(@)|” < |z~ fI" = |T(x) - fII", Y& € H, Vf € Fix(T),

then T is said to be strongly or n-attracting nonexpansive. The identity mapping

9
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I:H — H, x+— x, can be considered as an n-attracting nonexpansive mapping

for an arbitrary n > 0 with Fix(I) = H. Moreover, a mapping T : H — H

is called a-averaged nonexpansive if there exist & € [0,1) and a nonexpansive
mapping N : H = H s.t. T = (1 —a)l + aN.

Fact 2.0.1 (Selected properties of nonexpansive mapping [127]).

(a)

(b)

(c)

If a nonexpansive mapping T : H — H has at least one fized point, Fix(T) C

H s closed conver.

Let « > 0. Then, T : H — H is a-averaged nonexpansive iff (if and only if)
T is —

o ) .
-attracting nonexpansive.

Let Ty : H — H and Ty : H — H be nonexpansive with Fix(T1) N Fix(T3) #
0. Then, for a € (0,1), (i) (1 — a)Ty + oTy is nonexpansive with
Fix((1 — )T\ + aTy) = Fix(T\) N Fix(Ty). In addition, (i) if either T,
or Ty is attracting nonexpansive, then (1 —«a)Ty 4+ Ty is also attracting non-

expansive. Moreover, (iii) if Ty is m-attracting nonexpansive and Ty is 1z-

(=D)L
(1—a)p+ang +1

attracting nonexpansive, then (1—a)T) +aTy is <

attracting nonexpansive.

Let Ty : H — H be nonexpansive and Ty : H — H attracting nonexpansive
with Fix(T1) N Fix(Ty) # 0. Then, (i) ToT) : H — H is nonexpansive with
Fix(TT1) = Fix(Ty) N Fix(Ty). In addition, (ii) if Ty © H — H is also
attracting nonexpansive, then T5T) is attracting nonerpansive. Moreover,
(73) if Ty is ny-attracting nonexpansive and Ty is ne-attracting nonexpansive,

then 15T, is 2
m + 12

-attracting nonexpansive.

LetT' : H — H be 1-attracting nonexpansive, which is also called firmly non-
ezpansive, with Fix(T) # 0. Then, for p € (0,2), (1 —p)I +puT : H — H

is 'u—attmctmg nonezpansive with Fix((1 — p)I + pT) = Fix(T). More-

1
over, T is firmly nonexpansive (iff T is §—avemged nonexpansive) iff 2T — T

1S NONETPANSIVE.

Note that Fact 2.0.1 also holds for a wider class of mappings called quasi-

nonexpansive; a mapping T : H — H with Fix(T') # 0 is called quasi-nonezpansive
if |T(z) = T(f)|| < llz — £l for all (z, f) € H x Fix(T).
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Given a nonempty closed convex set C' C H, the mapping that assigns every
point in H to its unique nearest point in C' is called metric projection onto C' and
is denoted by Pz. Mathematically, one can state Po : H — C, @ — Po(x) €
arginfycco ||z — y||. Pc has the following properties: Fix(Pr) = C; Pg is 1-
attracting nonexpansive; and ||z — Po(x)|| = d(z, C) = infycc |z — yl|, V& € H.

Given a continuous convex function © : H — R, the subdifferential of ©
at any y € H, the set of all the subgradients of © at y; 00(y) := {a € H :
(x —y,a) + O(y) < O(x),Vx € H}, is nonempty. Given a continuous convex
function © : H — R, suppose that there exists & € H s.t. O(x) < 0. Using one
of its subgradients ©' : H — H (i.e., ©'(x) € 00(x), Vo € H), define a mapping
Tipo) : H— H by

x — %@’(m) if O(x) > 0,
Tip(o) : @+ 10" ()]
x otherwise.

Then the mapping Ti,e) is called a subgradient projection relative to ©, where
Fix(Tpo)) = lev<© := {x € H : O(x) < 0} [5,117,127]. Note that Ty,e) is not
nonexpansive but quasi-nonexpansive [5,117,127].

Let ©f : H — [0,00), k € N, be a continuous convex function and 00(y)
the subdifferential of ©) at y. Also let T' : H — H denote an n-attracting
nonexpansive mapping. Define a mapping &, : H — H, Vk € N, as ¢, =
T [(1 — )l + )\kTsp(@k)]. The following scheme, an extension of the scheme in
[124,126], provides a vector sequence that minimizes asymptotically the sequence

of objective functions (Oy)ren over Fix(T).

Scheme 2.0.2 (Extended Adaptive Projected Subgradient Method [99, 100]). For
an arbitrarily given hy € H, generate a sequence (hy)reny C H by

Or(hy) L
®r(h) =T |hy — \y————-0, (h if©.(h 0,
By = 4 Pe) =T e = Mg SO | if O () #

T (hy) otherwise,
where O, (hy) € 00 (hy), A\ € 0,2], Vk €N, and 0 denotes the zero vector.

Replacing T" with a metric projection operator, Scheme 2.0.2 is reduced to the
original APSM [124, 126].
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Fact 2.0.3 (Selected properties of extended APSM [99, 100]). Define Qy := {h €

Fix(T) : ©g(h) = O} := inf @k(w)}, Vk € N. The sequence (hi)ken generated

zcFix(T)
by Scheme 2.0.2 enjoys the following properties.

(a) (Monotone Approzimation) Assume the following conditions:
L. ko € N s.t. (1) Q1= o, W # 0 and (ii) ©p =0, Vk > ko, and
2. A\ € (0,2), Vk > ko.
Then,

Hhk+1 _ h*(’“)H < Hhk W vR*® ¢ 0, VE > k.

In addition, assume that

3. hk Q Qk fOT‘k Z ko.
Then,

[eir =wO < e =

‘, vh® € Q.

(b) (Strong convergence) Assume 2.0.3.a.1 and the following:

1. 361,62 >0 8.t A\, € [61,2 — 62], Vk > ]{?0, and

2. There exists a hyperplane 11 C H s.t. rig(Q) # 0, where rig(Q) =
{h€Q:3¢>0 st Blh,e)NII C Q} is the relative interior of S
w.r.t. 1. Here, B(h,€) :={x € H : || — h|| < €} is an open ball.

Then, the sequence (hg)ren converges (strongly) to a point h e Fix(T).
(c) (Asymptotic optimality) Assume 2.0.3.a.1, 2.0.3.b.1, and

1. (O} (hg))ken is bounded.
Then, limy_,o, Ok (hy) = 0. Assume also 2.0.3.b.2, and

2. (@k(fz))keN is bounded.

Then, limy_,», ©x(h) = 0.

Note that the ©) s appearing in the remaining of this thesis are automatically
bounded [126, Proposition 3-(a)].



Chapter 3

Efficient Blind M AI Suppression
in DS/CDMA Systems by
Embedded Constraint Parallel

Projection Techniques

Summary

This chapter presents two novel blind set-theoretic adaptive filtering algorithms
for suppressing “Multiple Access Interference (MAI)”, which is one of the central
burdens in DS/CDMA systems. We naturally formulate the problem of MAT sup-
pression as an asymptotic minimization of a sequence of cost functions under some
linear constraint defined by the desired user’s signature. The proposed algorithms
embed the constraint into the direction of update, and thus the adaptive filter
moves toward the optimal filter without stepping away from the constraint set. In
addition, using parallel processors, the proposed algorithms attain excellent per-
formance with linear computational complexity. Geometric interpretation clarifies
an advantage of the proposed methods over existing methods. Simulation results
demonstrate that the proposed algorithms achieve (i) much higher speed of con-
vergence with rather better bit error rate performance than other blind methods
and (ii) much higher speed of convergence than the non-blind NLMS algorithm

(indeed, the speed of convergence of the proposed algorithms is comparable to the

13
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non-blind RLS algorithm).

3.1 Introduction

The goal of this chapter is to develop a blind Multiple Access Interference (MAI)
suppressing algorithm, being “efficient” in the sense of (i) low computational com-
plexity and (ii) high speed of convergence, for Direct Sequence Code-Division
Multiple-Access (DS/CDMA) systems.

One of the noticeable advantages of CDMA systems is that users can share
time and frequency by exploiting distinct spreading codes, or, in other words, users
can transmit their information symbols at the same time and frequency. CDMA
receivers, on the other hand, are usually affected by interference originated from
transmitted symbols of other users. This is commonly referred to as MATI and it is
known to deteriorate the overall capacity. A great deal of effort has been devoted
to MAI suppression [38,39,62,63,74-76,79,90,92,94,118,119].

To realize high throughput systems, blind methods for MAT suppression, which
do not require a training sequence (or pilot signals), have been particularly in
great demand [62,63,90,92,94,119]. In 1995, Honig et al. proposed a blind adap-
tive multiuser detection method [62], in which the problem is formulated as a
constrained optimization with a linear constraint defined by the desired user’s
signature. In 1997, Park and Doherty have proposed a simple set-theoretic blind
method called Space Alternating Generalized Projection (SAGP) [90], which uti-
lizes generalized projections onto non-convex sets (see Remark 3.3.4 and [110]).
The SAGP exhibits better performance in the steady state at the expense of slower
convergence rate than the method in [62]. In [88], it is reported that fast algorithms
are necessary to keep good performance especially in wireless communications.

In 1998, Apolinério Jr. et al. have proposed the Constrained Normalized Least
Mean Square (CNLMS) algorithm [67], which embeds the constraint used in [62]
into the direction of update, providing fast convergence. Unfortunately, the
CNLMS does not yet achieve sufficient speed of convergence because it takes just
one datum into account at each iteration. In 2004, on the other hand, a fast blind
MAT suppression method has been proposed [20], which we call Blind Parallel
Projection (B2P) algorithm. The B2P developed the idea of the SAGP by using

a certain parallel structure and convezification, leading to excellent performance.
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The filter recursion (update) of the B2P is constructed by two steps at each iter-
ation (cf. Remark 3.3.4): (i) shift the filter in descent directions of cost functions
and (ii) enforce it in the constraint set.

This chapter presents two embedded constraint blind algorithms for an adap-
tive MAI suppression filter. Embedded constraint and parallel structure are the
keys to realize fast convergence with linear order complexity (see Remarks 3.3.3
and 3.3.4). The proposed algorithms develop the idea of the CNLMS for accel-
eration of convergence by taking into account more than one datum with several
parallel processors at each iteration. Actually, the algorithms are derived from
a set-theoretic adaptive filtering scheme named Adaptive Projected Subgradient
Method (APSM) [124-126] (see Chapter 2), which has been successfully applied
to the stereophonic acoustic echo cancellation problem [133,138] (see Chapter 5).
Roughly speaking, the algorithms minimize asymptotically a sequence of cost func-
tions that are defined by the received data at every sampling time. Each iteration
is constructed by two stages as follows. The first stage of the algorithms estimates
the amplitude of the transmitted signal (as in [90]) and the transmitted bits. By
using these estimates and the constraint used in [62], closed convex sets called
stochastic property sets [see (3.3.7) in Sec. 3.3] are newly designed and, based on
the distances to these sets, a reasonable cost function is defined. The second stage
updates the MAIT suppression filter in a descent direction of the cost function.
The proposed algorithms have no need to enforce the filter in the constraint set
unlike the SAGP or the B2P, since the constraint is embedded into the direction of
update; i.e., the filter does not step away from the constraint set. Geometric inter-
pretation clarifies an advantage of the proposed algorithms over the CNLMS, the
SAGP and the B2P algorithms (see Remark 3.3.4). Simulation results exemplify
dramatical improvements expected by the geometric interpretation.

Preliminary versions of this chapter are presented in [130, 131].

3.2 System Model

A Binary Phase-Shift Keying (BPSK) short-code DS/CDMA system is briefly
summarized below. The system model considered in this chapter is exactly the
same as the one presented in [20,90,94]. Without loss of generality, assume that

the desired user’s signature s; satisfies ||s1]] = 1 as in [90]. The received data
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process (r[i])ien C RY (N: the length of signature) is

rli] = Aibi[i]s1 + > Aibi[i]s; + nli], Vi €N, (3.2.1)

=2

where

Ay > 0 : amplitude of the 1st (desired) user

bi[i] € {—1,1} : ith transmitted bit of the desired user

T T A .
81 € ——n, —— : signature of the desired user

VN VN

n[i] € RY :ith noise vector.

Moreover, A; (2 <1 < L) is the amplitude of the /th interference, and b[i] and 5;
are respectively the sth interfering symbol bit and the interfering vector generated
by [th interfering user’s parameters such as associated data bits and signature. In
the presence of K users, the number of interferences L — 1 can range from K — 1
to 2(K — 1), due to relative delays of the K — 1 interfering users [76].

The problem addressed in this chapter is to suppress efficiently the MAI,
S, A bi[i)5 in (3.2.1), with a linear filter without amplifying the noise ]i]

severely.

3.3 Proposed Embedded-Constraint Blind
Adaptive Algorithms

This section provides two set-theoretic algorithms for adaptation of a blind MAI
suppression filter h;, € RV, where k¥ € N denotes the iteration number. All
available data for the adaptation are assumed to be the sequence of received vectors
(r[i])ien and the desired user’s signature s; (NOTE: In the absence of Inter-Chip
Interference (ICI), the signature coincides with the spreading code and may be
readily available [63]).
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3.3.1 Set Design

To avoid the self-nulling' (i.e., canceling the desired user’s signals), the following

constraint is commonly imposed on the filter (e.g., [62]):
h,€Cy:={heR" :(h,s) =1}, Vk €N, (3.3.1)

Actually, (hg,s1) can be any positive constant, however, for simplicity, we let
(hg,s1) = 1. For any hy, € C,, Vi € N,

L
(e, P[i]) = Asbi[i] + > Aibili] (ha, 81) + (i, m[i]) - (3.3.2)

1=2
For suppressing the MAI without amplifying noise severely, the second and third

terms on the right side of (3.3.2) should be reduced as much as possible. Thus, a
Minimum Mean-Squared Error (MMSE) filter is defined as follows [119]:

h* e ar’gg&nE {((h,7[i]y — Aibi[i])?}, (3.3.3)

where E{-} denotes the expectation; see the appendix for the relationship between
the MMSE and the Minimum Output Energy (MOE) optimal filters. Since A

and b;[7] in (3.3.3) are not available, we use the following estimates [90]:

A = Aty (|<hk,r[k]>| - El,k) ,Vk €N, (3.3.4)
bigli] = sgn (hy,rlil), VE €N, (3.3.5)

where 111,1@ (;1\1,0 = 0) and /b\lk[z] are respectively estimates of the amplitude A,
and the ith transmitted bit b;[i] at iteration number %k, and v € (0,1] is the
forgetting factor; see Remark 3.3.5. For simplicity, we define the signum function
sgn: R — {—1,1} as, if a > 0, sgn a = 1, otherwise, sgn a = —1 (Va € R). With
the estimates in (3.3.4) and (3.3.5), the problem is reformulated as finding a point

'In the case when the amplitude of some interference is greater than that of a desired user,
the filter may track not the desired user but the interference. In such a case, the desired user’s
signal is suppressed. The set Cs can avoid such a situation.
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argmin { ((h.vlil) ~ Ay pibra [11)2} | (3.3.6)

Instead of the expectation in (3.3.6), we newly introduce the following stochastic

property sets [cf. Remark 3.A.2-(d)]:

~ ~ 2
CP[] := {h € RV : ((h,rlil) = Aipeibialil) < p} ,
VEEN, Vie Ty = {kk—1,-- k—q-+1}, (3.3.7)

where 7 is the so-called control sequence (cf. [22]) with ¢ elements (see Remark
3.3.5) and p > 0 is a parameter that determines the reliability of the set to contain
the MMSE optimal filter h* in (3.3.3). Intuitively, an increase of p inflates the
set C,(,k) [i], and thus we call p inflation parameter (p should be described as p,
because it can be designed independently for each set; in the following, however,

such subscripts are omitted for notational simplicity).

Since C is completely reliable to contain h*, our strategy is to use C, as a
hard (absolute) constraint set and {C’,gk)[i]}igzk as a collection of sets to which the

distances should be reduced.

3.3.2 Proposed Algorithms

Let us derive the proposed algorithms from Scheme 2.0.2 with the sets in (3.3.1)
and (3.3.7). Given ¢ € N\ {0}, let {wfk)}LeIk C (0,1] satisfying 3 7. wh =1,
Vk € N, be the weights. Define the cost function
( (k)
Y Ld (e, CPL N C)d(R, ORI N C
W ky~p L s »“p [/] 5)7
L€, Lk
Oulh) = ¢ it L) 2= 3wl (e, CPHIN ) £ 0, (3:3.8)
LETY,
\ 0, otherwise,

where d(h,CSV[)] N Cy) (z Hh — PC‘()IC)[L]QCS(h)H), Vi € Iy, denotes the distance
from the variable vector b € RY to the set C,(,k) [t]NCs (which should be reduced).
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Table 3.3.1: Adaptive blind algorithms. Pc, (z) = Q. + s, Vx € RY.
Algorithm | Adaptation rule

OPM-GP | hyi1 = Po, [hy. + o (P (hi) — ha)] = by, — <T|Lk’[/~s][!|2]> "
where Hy, := {h : (h,r[k]) = 0}

SAGP 121\17;3“ & gl,k are computed by (3.3.4) & (3.3.5)

hk:—i—l = PCS [hk +u (P(g)(hk) — hk,)], N

( (R, k) = A

P (h) = hy — ——rlk],
s I [k]||*

if (hg,rlk]) >0,

where P9 (hy) := hy, r[k]) + Al

P, (hi) = hy — <

r[k],
K I [k]]1”
| otherwise,
with H ={h: < rlk]) = £A1 441}

CNLMS Al,k+1 & bl,k are computed by (3.3.4) & (3.3.5)
hiir = by, + 11 (P g, () = hk>

B2P | Ay, is computed by (3.3.4)

q—1
hy + A\ (Z w](-k)PC(k)(hk) — hk)]

J=0

where C](-k) ={h:|(h,r[k—j])| < A\l,kJrl}

hiy1 = Pe,

(k)
When L{" # 0 (& i & Moz, CSP1 N Cy), the weighting %d(hk, cPnney)
k

() is the normalizing factor' the sets

is given to each distance function, where L,
far from hj, have large weighting. When Lé ) =0, we have hy € ﬂbdk [L] NCs,
hence nothing is left to do in this case. A subgradient of O at h; is given by

1
04 (he) = 5y ez, L0 (hk — Py, (B )) € 90y, (hy) if L # 0; for details,
k
see [126, p.607, Example 3].
Application of T'= I and ©(h) in (3.3.8) to Scheme 2.0.2 yields the following

algorithm.

Algorithm 3.3.1 (Blind Parallel Constrained Projection Algorithm).

Requirements: the control sequence Iy, the weights wfk) > 0 s.t. ZLGI wfk) =1,

the signature 8y, the projection matriz Q, := I — s;8] (NOTE: ||s{|| = 1), the
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inflation parameter p > 0, the step size A\, € [0,2] and the forgetting factor v €

(0, 1].
Initialization: A1 0=0,hy=58¢€C;
Algorithm:

1) Estimation of Ay and by[i]

Aiper = Aig+y (It D) - A1)
biilt] = sgnlhe,rl]), €T

2) Update of filter
hyo1 = h + )\k./\/l (Zw c®p, (hk) hk);
LETL},

where, for any h € Cj,

4 _ <h, "'[L]> - A\l,kﬁ-l/b\Lk[L] — \/ﬁ ol
h T[L]TQS'[’[L] QS []7

if (h, [L]) — A k+151 k] > \/p,

P Jn S(h) = <h, ’I”[L]> Al k+lbl k[b] + \/_
e e g, @l
if (h,m[e]) = Avnrbii[l] < —y/p,
L h, otherwise,

2
ZLezkwb HPCUc) _(hi) = hy,

2 lfhkgémLeIk
=1 S Py, (i) = B

1, otherwise.

(3.3.9)

(3.3.10)

[L] N Cy,

NOTE: For all k € N, hy, € C; holds, since (i) hy € C and (ii) hy € Cs = hyyq €
Cs from (3.3.1) and (3.3.9). The proof of (3.3.10) is given in 3.3.3. A weighted

average of multiple projections as in (3.3.9) is referred to as parallel projection

[24], since it can be computed in parallel by using ¢ concurrent processors.
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On the other hand, application of 7' = I and Oy (h) := U, (Pc,(h)), where

(k)
w, .
> 1 — (e, COLNA(R, CPL)), i LY = 3, wPd (R, OV 1)) # 0,

0, otherwise,

to Scheme 2.0.2 yields the following algorithm (for details about the derivation of
the algorithm, see [126, p.610, Example 5]).

Algorithm 3.3.2 (Blind Constrained Parallel Projection Algorithm).

Requirements & Initialization: the same as Algorithm 3.3.1

Algorithm:
1) Estimation of Ay and bi[t]: the same as Algorithm 3.3.1
2) Update of filter

hk+1—hk+)\kM (Zw P (k) )— hk>, (3.3.11)

LEIk

where Cy := {h € RY : (h, ;) = 0} is a translated linear subspace of Cy and

Pz, (h) = Q,h,
)
PC‘()k)[L](h) = < h_ <h, ’l"[L]> — A\LkJrlng[L] + \/ﬁ

if {h,r[i]) — A\l,kJrl/b\l,k[L] > /P

v, if (i) = BBl < - /5.

ol
( b, otherwise,
2
> €T, wb(k) HPC(’“) (hi) — hy, .
t d P [¢]
(2) . (k) 29 Zf ZLEIIC wL C(k) (h’k) h’k ¢ CsLa
M].; = HP~S (ZLEIk Wy Pc(k) (hk) hk>
1, otherwise.

Algorithm 3.3.2 belongs to the family of Embedded Constraint Adaptive Pro-
jected Subgradient Method (EC-APSM) [124-126]. Moreover, Algorithm 3.3.1 can
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be generalized into a new family of embedded constraint algorithms shown in
Sec. 3.3.4.

Remark 3.3.3 (Computational complexity).  Note that the computation of
Q.a = a — s,(sTa), Va € RY, requires 2N multiplications. Moreover, ¥i €
T \ {n}, “rl]"Q,r[] and Q,r[t] in Algorithm 3.3.17 and “|r[]||* in Algorithm
3.3.27 are computed at the previous iterations. Hence, we see that both Algorithms
3.3.1 and 3.3.2 require (4q + 5)N multiplications at each iteration. Furthermore,
note that each term in the summation in (3.3.9) [or (3.3.11)] can be computed in
parallel (independently). Therefore, with q concurrent processors, the number of
multiplications imposed on each processor is reduced to 9N no matter how many
projections are used, i.e., the complexity order imposed on each processor is linear.
This implies that the proposed algorithms are suitable for real-time implementa-
tion. On the other hand, the Recursive Least Squares (RLS)-based-MMSE method
[38,39,92] and the subspace approach [119], which are well-known blind methods,
require O(N?) and (4L + 3)N + O(L) multiplications, respectively. Moreover, for
good performance, the subspace approach needs to detect the exact number of strong

interferences, which increases the overall system complezity.

Table 3.3.1 gives a unified view, with projection operators, to the follow-
ing blind algorithms: the normalized OPM-based gradient projection (OPM-GP)
[62,90], the SAGP [90], the blind CNLMS that is based on the idea of [67] com-
bined with our defining sets in (3.3.7), and the B2P [20]. The OPM-GP [90] is
a normalized version of the blind MOE algorithm [62]; the algorithms are called
respectively projected NLMS and projected LMS in [28]. Tt is not hard to see that
the CNLMS is a special case of Algorithm 3.3.1 with ¢ = 1 and p = 0. It should
be remarked that the steady-state performance of the B2P and the SAGP may
be different, since the algorithms use different sets as shown in Table 3.3.1. The
SAGP utilizes the so-called generalized projection P9 (hy) (see e.g., [110]), which
gives a nearest point from hj in the non-convex set H ,gﬂ U H,gf). The general-
ized projection is not a strict projection because it is not always unique (cf. the
definition of projection in Chapter 2). In fact, if (hy,r[k]) = 0, there exist two
nearest points from hy in H,EJF) U H,Ef); PHIE+)(hk) and PH,E*)(hk)' Fortunately, a
geometric comparison of the SAGP with the proposed algorithms is possible (see
Remark 3.3.4), since C’ék)[k] coincides with H,EJ’) [or H,g_)] when sgn(hy, r[k]) =1
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RN

......... » Algorithm 3.3.1: h,(clj_l
= Algorithm 3.3.2: h,(fll
. 3

—» CNLMS: b,

Figure 3.3.1: A geometric interpretation of embedded constraint methods: the proposed
algorithms and the CNLMS algorithm. The dotted area shows Cﬁk) [k]N Cﬁk) [k—1]NCs.

(or sgn{hg, r[k]) = —1), by (3.3.5), (3.3.7) and Table 3.3.1. It is easily seen that
C’ék) used in the B2P is a closed convex set bounded by the hyperplanes H,ng) and
H{™ used in the SAGP.

Figures 3.3.1 and 3.3.2 illustrate geometric interpretations of the proposed
algorithms compared with a simple embedded constraint method (the CNLMS)
and non-embedded constraint methods (the SAGP and the B2P), respectively. A
geometric interpretation of the OPM-GP is also possible; the set Hj is nothing
but the translated subspace of H,EJF) [or H,Ef)]. For visual clarity, however, it is
omitted. For the proposed algorithm and the B2P, the uniform weights, w® = 1/2
(Ve = 1,2), are employed with ¢ = 2 parallel processors. For the B2P, the step
size is set to M. For the other methods, the step sizes are set to 1. The MMSE
optimal filter A* is assumed to satisfy h* € CV[K|NCY [k—1]NC,. All algorithms
are assumed to have, if necessary, a common amplitude estimation A\Lkﬂ and a

correct bit estimation by x[k]. A remark on geometric comparisons is given below.

Remark 3.3.4 (Geometric comparisons). Referring to Fig. 3.3.1, we see that the
proposed algorithms generate closer points to the MMSE optimal filter h* than the
CNLMS due to its parallel structure; i.e., the proposed algorithms utilize multiple

data simultaneously. As also seen in the figure, Algorithm 3.3.1 takes an averaged
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h(l) h(2)

k+1° "Tk+1
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hi,

- - =» Algorithms 3.3.1 and 3.3.2: h{),, h{?,
............ » BOP: hfﬁl

—-—> SAGP: A",

Figure 3.3.2: A geometric interpretation of non-embedded constraint methods (the
SAGP and the B2P) and the proposed methods. The dotted area shows C[(,k)[k] N
cPk —1].

direction of exact projections onto {C,(,k) (1] N Cs}iez,,, while Algorithm 3.3.2 takes
an averaged direction of relaxed projections. The “relaxation” depends on the an-
gle between s; (the normal vector of the hyperplane Cs) and r[i] (the one of the
boundary hyperplanes of C’,(,k)[L]).

Referring to Fig. 3.3.2, we see that the B2P generates a closer point to h* than
the SAGP due to its parallel structure. The proposed algorithms generate even
closer points than the B2P due to its embedded constraint structure in addition
to its parallel structure. We also see that the SAGP and the B2P are constructed
by two steps; the second step Pc,(+) in Table 3.3.1 is to enforce the filter in the
constraint set. On the other hand, the CNLMS and the proposed algorithms update

the filter along the constraint set, and hence they are constructed by one step.

The discussion in Remark 3.3.4 will be supported by simulation in Sec. 3.4.
Finally, from our observation, a simple strategy for the design of v and ¢ [cf. (3.3.4)
and (3.3.7)] is given below.
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Remark 3.3.5 (On design of v and ¢). From Remark 3.A.2-(d) in the appendiz,
A\l,k-i-l ~ A should be valid for good steady-state performance, which can be ob-
tained with small 7y, although it may decrease the speed of convergence [90]. From
our experience, q leads to good performance when T, /qTy > 0.1, where T, and
Ty, denote the period when the channels are almost constant and the bit period,

respectively.

3.3.3 Proof of Equation (3.3.10)

Suppose h € (. For notational simplicity, in this section, we represent the
stochastic property set C’,gk)[b] as C [see (3.3.7)]. The set C'is a closed convex set
bounded by two hyperplanes

Hy = {zeRY: (@, r[t]) — ALpibii[t] = Vo),
H = {zeRY: (@, r[t]) — AL ppibiil] = —/5)-

(a) Assume —/p < (h,7[]) — jzl\l,ngl,k[L] <P (& h € (). In this case,
Pcﬁcs(h,) — h

In the other cases, Ponc,(h) = Py, .nc,(h), where Hgy (sgn: + or —) is the
nearest hyperplane, from h, of the two H, and H .

(b) Assume (h,7[1]) — A\l,HfI)\Lk[L] > /p (= h ¢& C). In this case, the nearest
hyperplane is obviously H, and hence Pene,(h) = Pu,nc(h). Since

H,.NC, = {m c2T [sy,r]] = 1, Aol + \/ﬁ] } ,
we have (cf. e.g., [73, p.65 Theorem 2])
Pu.rc(h) = h— G(GTG)™(Gh - v),
A psibigld] + /P

1
|si]] = 1 and I — s;8] = Q, (see Requirements in Algorithm 3.3.1), we

where G := [r[], s1] and v := . Using (s1,h) = 1,
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obtain

(hyri]) — Avgsibigld — /5
rl]7Q,rll]

Pcﬂcs(h) :h— QS’I"[L].

(c) Assume (h,r[]) — E17k+151,k (L] < —y/p (= h ¢ C). In this case, the nearest

hyperplane is obviously H_, and hence Poneo,(h) = Py_nc(h). In analogy

with (b), we can verify

(h,rl]) = Ay i bipld] + /P

Fenc.(h) =h= P Qurl

QST’[L] )

which completes the proof. O

3.3.4 New Family of Embedded Constraint Algorithms

Let us consider the following problem.

Problem 3.3.6. Suppose q sets {S,(k)}_, C RY are defined for each k € N.
Find a sequence (hi)ren C RN that asymptotically minimizes the distance to

({S.(k)}_|)ken over a linear variety V.

Setting V' = C and S, (k) = C,(,k)[a], Vk e N, Vi € T,(:= {1,2,--- ,q}), Problem
3.3.6 is reduced to the one in Sec. 3.3. Conversely, using V' and S,(k) instead of
C, and C’,gk)[a], Vk € N, Vi € Zy, in Algorithm 3.3.1, respectively, we obtain the

following scheme to solve Problem 3.3.6.

Scheme 3.3.7 (Adaptive Parallel Constrained Projection [A-PCP] Method).

Generate a sequence (hy)gen by
q
hit1 = hi + A My, (Z w® Ps,aynv (Br) — hk) ,
=1
Vk € N, where hy € V', \; € [0,2] and
W || Ps, g () — ha||”

k) 2 lf by ¢ ﬂf:l Sb(k) N V,
M, = HZLI Wy PSL(k)ﬂV (hk) — hy,

1, otherwise.
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If, in Scheme 3.3.7, the projection onto S,(k) NV is computationally expensive,
an outer approximating closed half-space can be used instead of S,(k) as in the
adaptive parallel subgradient projection algorithm (see Example 6.3.2). When S, (k)
(Vk € N) is a hyperplane, the choice of ¢ = 1 in Scheme 3.3.7 derives the CNLMS
algorithm [67].

3.4 Numerical Examples

This section provides the results of some computer simulations, all of which are
performed under the following conditions. The number of interfering users is
(K — 1) = 5, and all users have amplitude 10 times greater than the amplitude
of the desired signal A; = 1. Signals are modulated by length-31 Gold sequences
(N = 31), which are chosen randomly. For all algorithms, hy = s; € C; is
employed and, if the estimation of the amplitude is needed, the forgetting factor

is set to v = 0.01, by following the way in [20, 90].

3.4.1 Effects of Inflation Parameter

First, the effects of the inflation parameter p in (3.3.7) are examined. Figure 3.4.3
compares the output Signal to Interference-plus-Noise Ratio (SINR) performance
of Algorithm 3.3.1, which at the kth iteration is obtained by

2
2521 <h’](gu)7 31>
(R, 1] = AT K]s )
ALY

SINRk =

U
u=1

Here h{") and r([k] are the respective vectors at the uth realization, A" and
b\")[k] are respectively the amplitude and the kth transmitted bits of the desired
user at the wuth realization, and U = 500 is the number of realizations. For
simplicity, the path delays of users 2 to 6 are integer multiples of the chip rate;
i.e., al. € [0,Tp], a € N (T¢: chip period). The delays were chosen randomly with

equal probability among given multiples at every realizations. The simulations are
2

A
performed under Signal (or bit energy) to Noise Ratio (SNR) := 10log, —21 =15
o

n



28 CHAPTER 3. EFFICIENT BLIND MAI SUPPRESSION IN DS/CDMA

15

10

a1

Output SINR (dB)
b o

-10

15 500 1000 1500 2000
Iteration number

Figure 3.4.3: SINR curves of Algorithm 3.3.1 with different values of inflation parameter
p under SNR=15 dB.

dB, where 02 is the variance of additive noise. Different fixed values, p = 0, 0.2, 0.4
and 0.7, are assigned to the inflation parameter. For simplicity, we set 7[i] = 7[1]
for i < 1, and w® = 1, Vi € Zy. The step size Ay, = 0.2 (see also below) is
employed with ¢ = 16 pgrallel projections.

We observe that, although “p = 0” exhibits the fastest initial convergence in
the experiments, “p = 0.2” achieves better steady-state performance (“p = 0.4”
and “p = 0.7”7 are also expected to achieve higher SINR than “p = 07 after
more iterations). Considering the performance in the initial and steady states,
“p = 0.2 ~ 602" may be an effective fixed value in this simulation. Note, however,
that p should be designed by taking into account influence of MAI and estimation
errors in 121\17“1 & /b\lk[z] as well as noise. Hence, the design of inflation parameter
needs additional discussion, which will be addressed in a future work; a simple
fundamental analysis on this designing problem is reported in [139] (see also [140]).
With an appropriately designed inflation parameter, the step size A\, can naturally
be set to 1; A* may not belong to the simple sets we designed herein, and A, = 0.2
realizes robustness against such a situation in our simulations.

The proposed algorithms are next compared with the Generalized Projection
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Figure 3.4.4: Proposed algorithms versus GP and constrained RLS in SINR under
SNR=15 dB.

(GP) algorithm? [90] and the constrained RLS algorithm based on the so-called
orthogonal matched filtering detector [38,39] (see [92] for a convergence analysis
of the blind RLS-based method). For the GP and proposed algorithms, the step
sizes are set to 0.2. For the proposed algorithms, we set p = 0 and the other
parameters to the same as in the previous simulation shown in Fig. 3.4.3. The
results are depicted in Fig. 3.4.4. We observe that the proposed algorithms exhibit
much faster convergence than the conventional algorithms, which suggests the

advantage of the proposed algorithms in tracking ability.
A fresh look at Fig. 3.4.3 brings a natural suggestion that excellent perfor-

mance in both initial and steady states will be simultaneously realized by assign-
ing “p = 0” at the beginning and “an appropriate value of p” after convergence;
this suggestion is consistent with the results in [139]. To verify this suggestion,

additional experiments are performed below.

2The GP algorithm is classified into the family of semi-blind, since the algorithm is based
on the assumption that the amplitude as well as the signature of a desired user is known.
The algorithm is given by replacing the estimated amplitude with the known one in the SAGP
algorithm, which is shown in Table 3.3.1.
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Figure 3.4.5: Proposed algorithms versus other blind methods in SINR under SNR=15
dB.

3.4.2 Proposed Methods with Change of Inflation Param-
eter & Comparison with Other Blind Methods

We assign 0 at the beginning and 0.7 after iteration number 500 to the inflation
parameter p, and the other parameters are the same as employed in Fig. 3.4.3.
Figure 3.4.5 compares the SINR performance, under SNR =15 dB, of the proposed
algorithms with the ones presented in Table 3.3.1 (See [20] for comparisons with
another major blind method, the Constant Modulus with Amplitude Estimation
(CMAE) [94]). For Algorithm 3.3.2 and the B2P, the same parameters as Algo-
rithm 3.3.1 are employed (For the B2P, the step size is set to A\, = 0.2My,). For
the OPM-GP, the SAGP and the CNLMS, step sizes are set to 0.2 for a fair com-
parison. As expected from Remark 3.3.4, we observe that the proposed algorithms
outperform all other methods in terms of speed of convergence, while attaining
excellent SINR in the steady state. Moreover, the additional computational com-
plexity imposed by the proposed algorithms can be somehow alleviated by using
processors in parallel (see Remark 3.3.3). As suggested in the end of Sec. 3.4.1,
we observe that the steady-state performance of Algorithm 3.3.1 is improved by
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Figure 3.4.6: BER curves of the proposed algorithms with p (i) fixed throughout sim-
ulations and (ii) switched after convergence.

approximately 1 dB, although, judged from Fig. 3.4.3, the choice of p = 0.7 may
not be the best.

To highlight the steady-state performance, the Bit Error Rate (BER) perfor-
mance is depicted in Figs. 3.4.6 and 3.4.7 over SNR ranging from 5 to 15 dB. To
capture the steady-state performance in a fair manner, 6000 bits are transmitted
at each realization and the last 1000 bits for 100 realizations are used to calculate
the BER. For a comparison, the line by the optimal filter A" is depicted, which is
computed by (3.A.1) and R, = Als;s7 + S, A?5,5] + 02T (see the appendix),
with full information, based on the independence assumption.

Figure 3.4.6 compares the BER of the proposed algorithms with “changing the
inflation parameter p as in Fig. 3.4.5” and “fixing p to 0”. We see that the BER
performance is significantly improved due to the change of p. In Fig. 3.4.7, the
BER performance of the proposed algorithms with changing p is compared with
the blind methods employed in Fig. 3.4.5. Referring to Figs. 3.4.5 and 3.4.7, we
observe that the proposed algorithms achieve much faster convergence in SINR
than the SAGP and the CNLMS as well as almost the same BER performance as
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Figure 3.4.7: Proposed algorithms versus other blind methods in BER.

the optimal filter. Also we observe that the proposed algorithms drastically out-
perform the OPM-GP and the B2P in BER. Reviewing Fig. 3.4.3 and considering
that the CNLMS is a special case of Algorithm 3.3.1 with ¢ = 1 [see (3.3.9) and
Table 3.3.1], another suggestion is brought that the steady-state performance of

Algorithm 3.3.1 will also be improved by switching ¢ to 1 after convergence.

To verify this second suggestion, further experiments for the proposed algo-
rithms are performed under SNR = 15 dB, where the number of parallel pro-
jections is set to ¢ = 16 at the beginning and it is switched to 1 at iteration
number 500 and the inflation parameter is fixed to p = 0 throughout the simula-
tions. The other parameters are the same as in Fig. 3.4.5. Figure 3.4.8 compares
the SINR performance of the proposed algorithms with the blind methods used
in Fig. 3.4.5. We observe that the performance in the steady state is efficiently
improved by decreasing the number of parallel projections after convergence, as
expected by the second suggestion. This switching strategy is easily realized in

hardware implementation.
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Figure 3.4.8: “Proposed algorithms with ¢ switched to 1 after convergence” versus
other blind methods in SINR under SNR=15 dB.

3.4.3 Comparison with Non-Blind Methods

Finally, Fig. 3.4.9 compares the proposed algorithms, under SNR=15 dB, with the
non-blind (semi-blind) algorithms; the GP algorithm [90] with known amplitude of
desired user, and the Normalized Least Mean Square (NLMS) and RLS? algorithms
[56] with training sequences. For the non-blind methods, parameters are adjusted
to achieve the fastest noticeable rate of convergence. More precisely, we set 6 =
1.0 x 10~* and X = 0.98 for RLS; and p = 0.6 for NLMS and GP. For the proposed
algorithms and the B2P, the employed parameters are the same as in Fig. 3.4.5.
We observe that the proposed algorithms achieve rather faster convergence than
the non-blind NLMS, and exhibit comparable speed of convergence to the non-
blind RLS. These remarkable improvements are accomplished by the embedded

constraint and parallel structures.

3Tt should be stressed that the non-blind RLS algorithm here is different from the (blind)
constrained RLS algorithm employed in Sec. 3.4.1.
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Figure 3.4.9: Proposed algorithms versus non-blind methods in SINR under SNR=15
dB.

3.5 Conclusion

This chapter has presented two blind adaptive filtering algorithms for the MAI
suppression in DS/CDMA systems. Since the proposed algorithms are based on
the parallel projection with the embedded constraint structure, they achieve closer
points to the MMSE optimal filter than the existing methods at each iteration.
Simulation results have demonstrated that the proposed algorithms exhibit excel-
lent performance.

The extensive experiments in this chapter suggest that the A-PCP (see
Sec. 3.3.4) and the EC-APSM may include excellent embedded constraint algo-
rithms. Those two families of embedded constraint algorithms (i.e., A-PCP and
EC-APSM) are expected to be useful not only in communications but also in a
wide range of applications. In the presented simulations, we focus on the uniform
weights (wfk) = 1, Vi € TIy; see the previous section) for simplicity. For further
improvements, arcll efficient strategic weighting technique such as the one shown in
the following chapter would be effective. An efficient extension of the proposed

algorithms to complex-valued cases has been presented in [140] in the adaptive
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beamforming application. Moreover, in situations where good phase synchroniza-
tion is difficult to obtain, one should use the differential PSK modulation; such
issues have been addressed in [21]. Finally, in multipath fading environments, the
proposed algorithms should be combined with channel estimation techniques, and

must be robust against channel-estimation errors.

Appendix

3.A MMSE and MOE Detectors

Let us show a simple observation.

Observation 3.A.1. Suppose (I) the auto-correlation matriz R, = E{r[i]r[i]"}
is full rank (= h* is unique), and (1) y,, := E{r[i]bi[i]]} = B8s1, 38 € R. Then,
for any given o € R,

-1
Rr S1

h =—F———
sTR,'s;

:ar'genginE{((h,r[iD — abi[i])*}. (3.A.1)

i

.
—_ *
= h!

Sketch of proof:
By the condition (1) and “Lagrangian multiplier” methodology (e.g., [61]), we

can easily obtain

T -1
S R'r' Yrp R—l
T —1 r 81 )
S1 s1R, s

Remark 3.A.2.

(a) Without the condition (I), h}, is not necessarily unique.
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(b)
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The condition (II) holds under slowly time-varying fading environments
with the following assumption: E{bi[i|b[i]} = 0, VI € {2,3,---,L}, and
E{b[i]n[i]} = 0.

The filters hy and h’ (= h*) are called the MOE detector and the (con-
strained) MMSE detector, respectively. Observation 3.A.1 shows that the
MMSE and MOE detectors coincide under (I) and (II).

By h* = h, (Va € R) under (I) and (II), a natural question would be: Does
the set

CW] = {h eRY . ((h,r[z’]> . azl,k[i])Z < p}

with an arbitrarily chosen o contain the optimal filter h*? If “yes”, we could
get an optimistic conclusion that the amplitude estimation A\l,k+1 18 not nec-
essary. Unfortunately, however, the answer is “no”, of which the reason is
as follows. By (3.3.2), (h, r[i]}—agl,k [i] has the term A1by [i]—a/b\l,k [i] in addi-
tion to the terms of MAI and noise. Hence, bounding ((h,r[i]> - agl,k[i]y
by small p does not necessarily suppress MAI sufficiently (without ampli-

fying noise severely) when |A; — a| > 0, which implies, from the context
between (3.3.2) and (3.3.3), that a should be close to Ay in order to ensure
h* € 6,(,k) [i]. Therefore, high accuracy of the estimation of Ay is essential

for good steady-state performance.



Chapter 4

Pairwise Optimal Weight
Realization —Acceleration
Technique for Set-Theoretic
Adaptive Parallel Subgradient
Projection Algorithm

Summary

The adaptive Parallel Subgradient Projection (PSP) algorithm has been proposed
in 2002 as a set-theoretic adaptive filtering algorithm providing fast and stable
convergence, robustness against noise, and low computational complexity by using

weighted parallel projections onto multiple time-varying closed half-spaces.

In this chapter, we present a novel weighting technique named Pairwise Op-
timal Weight Realization (POWER) for further acceleration of the adaptive-PSP
algorithm. A simple closed-form formula is derived to compute the projection onto
the intersection of two closed half-spaces defined by a triplet of vectors. Using the
formula inductively, the proposed weighting technique realizes a good direction
of update. The resulting weights turn out to be pairwise optimal in a certain
sense. The proposed algorithm has the inherently parallel structure composed of

¢ primitive functions, hence its total computational complexity O(qrN) is reduced

37
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to O(rN) with ¢ concurrent processors (r: a constant positive integer, N: filter
length). Numerical examples demonstrate that the proposed technique for r = 1

yields significantly faster convergence than not only adaptive-PSP with uniform
weights, APA, and FNTF, but also the regularized RLS algorithm.

4.1 Introduction

Adaptive filtering is a fundamental tool with applications in many fields such as
acoustics, communications, seismology, geophysics, astrophysics, and biomedicine
[11,56,97]. The demand is increasing for algorithms with high speed of conver-
gence to a reasonable approximation of the estimandum (system to be estimated).
The adaptive Parallel Subgradient Projection (PSP) algorithm [129] has been
introduced as an advanced time-varying set-theoretic approach to meet this grow-
ing demand. (As a different stream of set-theoretic methods, the so-called Set-
Membership (SM) approach, e.g., SM-NLMS [51], Frequency-domain-SM-NLMS
[52], has been independently developed.) The basic idea of this approach is as fol-
lows: (i) design multiple closed convex sets of which the intersection is sufficiently
small but contains the estimandum with high probability and then (ii) find a point
in the intersection. The approach does not essentially require the estimation of
statistics of random processes, and hence it is expected to play a leading role in
adaptive filtering for possibly nonstationary random processes. In this chapter,
we present an inventive idea for further acceleration of the algorithm in [129] while
keeping O(rN) complexity [N: filter length, (N >) r: a positive constant]. To
clarify the orientation of the present study from a wider viewpoint, we start with
a brief review on the development of adaptive filtering algorithms.

The Recursive Least Squares (RLS) [56,97] is a well-known family of adap-
tive filtering algorithms, which exhibit fast convergence even for highly colored
(stationary) inputs. Unfortunately, however, RLS is computationally-intensive
O(N?) [or O(N?) for its regularized version], and it is reported that the algorithm
shows inferior performance to the classical Least Mean Square (LMS) algorithm
[56] for nonstationary inputs [54,56]. To achieve convergence as fast as RLS
with O(N) complexity, simplified versions, called Fast-RLS (FRLS), have been
proposed [18,23,72]. It has been pointed out that FRLS suffers from intrinsic
instability (see [50] and the references therein). A great deal of effort has been
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devoted to stabilize FRLS with a moderate increase of computational complexity
[7,14,40,82,105]. Moreover, a class of adaptive estimation algorithms called Fast
Newton Transversal Filters (FNTF) has also been proposed [83] as an efficient ex-
tension of the method in [18] from AR(N) to AR(Lpxtr), Lentr € {0,1,---, N},
where AR(n) stands for an autoregressive (AR) process of order n. Unfortunately,
even if we employ the existing stabilized versions, the filter has a risk of diver-
gence, and thus, monitoring and reinitialization are always required [11, p. 77|,
[14,82,105], [42, p. 40]. Numerical instability is still a common issue for the RLS-

type algorithms to overcome.

The Affine Projection Algorithm (APA) [43,56,58,89,93,95,97,103] can be
interpreted as an example of a set-theoretic adaptive filtering algorithm. APA
has originally been proposed around three decades ago [58] to increase the speed
of convergence of the popular Normalized LMS (NLMS) algorithm [1,56, 84,97,
particularly for highly-colored input signals. The APA algorithm is based on an
iterative relaxed projection onto a series of linear varieties V, C RV (k € N: time
index), which is generated as the intersection of a certain number, say r € N\ {0},
of hyperplanes that are determined by instantaneous input-output relations. If
the estimandum h* € RY belongs to Vi, monotonicity ||hy1 — h*|| < ||k — h*|
holds (by the Pythagorean theorem), which is an important property for stable
performance (h; € RY: adaptive filter at time k). In noise free situations, h*
always belongs to Vi; thus the convergence speed can be raised by increasing r at
the cost of 2rN + O(r?) complexity (efficient versions called fast-APA, or FAP,
have been proposed to reduce the complexity [50], [42, Chapter2], [43]). In noisy
situations, an increase of r makes the membership probability Prob{h* € V}
close to zero, thus causing serious instability (for details, see [129]). It is strongly
desired to establish an algorithm simultaneously achieving (i) fast convergence,
(ii) O(N) computational complexity, (iii) numerical stability, and (iv) robustness
against noise.

The inherent parallelism' concept [4,17,22,24] would be a key in adaptive
filtering problems as well [50], to break the persistent deadlock existing among

the above requirements. The adaptive-PSP algorithm [129] enjoys exactly such

L As in the preface in [17], the term “inherently parallel algorithms” means those which are
logically (i.e., in their mathematical formulations) parallel, not just parallelizable under some
conditions, such as when the underlying problem is decomposable in a certain manner.
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a parallel structure. Indeed, it utilizes, for each update, relaxed projections
onto multiple, say ¢ € N\ {0}, closed half-spaces H, (hg),- -, H, (hg) (1; <k,
Vj =1,2,---,q) that contain h* with high probability even in noisy situations
(see Sec. 4.3.2). [To give a unified view of set-theoretic adaptive algorithms such as
NLMS/APA /adaptive-PSP and their embedded versions, the Adaptive Projected
Subgradient Method (APSM) has recently been established [124-126,128] (see
Chapter 2) and has successfully been applied to challenging real-world problems
such as stereophonic echo cancellation [134,138] (see Chapter 5), and blind mul-
tiuser detection in DS/CDMA systems [20,132] (see Chapter 3).] Hence, mono-
tonicity is highly expected to hold, opening a pathway to resolution of the noise
sensitivity problem. So far, just for simplicity, uniform weights have commonly
been used in adaptive-PSP, which suggests that further improvements of conver-
gence could be achieved by establishing an effective weight design.

The goal of this chapter is to bring out the potential of the adaptive-PSP
algorithm aggressively but without losing its computational efficiency. We pro-
pose an efficient adaptive weighting technique named Pairwise Optimal Weight
Realization (POWER), which uses projection onto the intersection of two closed
half-spaces as a basic tool for an efficient approximation of an ideal direction of
update. We first present an expression of a pair of half-spaces with a triplet of
vectors; by this expression a closed-form formula of the projection onto the in-
tersection is derived. The proposed weighting technique inductively utilizes the
formula to find a good direction of update. The resulting weights turn out to meet
certain optimality conditions [see Sec. 4.3.3.C]. In addition, by engaging ¢ proces-
sors, the overall complexity is kept O(rN), imposed on each processor, including
the weight design (see Secs. 4.3.4 and 4.6). There is a large variety of ways to
utilize the proposed weighting technique, among which we present two algorithms
named POWER-PSP type I and type 1II.

Numerical examples verify that the proposed technique significantly acceler-
ates the convergence speed while inheriting the notable stability from adaptive-
PSP. Moreover, the proposed algorithm achieves, with low computational cost,
even faster convergence than the (computationally-intensive) regularized RLS al-
gorithm as well as the APA and FNTF algorithms.

Preliminary short versions of this chapter were partially introduced at confer-
ences [128,137].
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Figure 4.2.1: Adaptive filtering scheme.

4.2 Adaptive Filtering Problem

The adaptive filtering problem is addressed in a real Hilbert space equipped with
the inner product (z,y) = z'y, Ve,y € H = RY (N € N*), and its in-

duced norm ||z|| = (SBTiB)I/Q, Ve € H (see Fig. 4.2.1). Let (ug),ey C R be
the input sequence (k: time index), and define the sequence of input vectors
(Ur)peny C H as up = [ug, Uup—1,- -+, up—n41]” € H, Yk € N. For r € N*, let
Up = [ug,up_1, - ,up_r1] € RV Yk € N. From (Uy)en, the observable data

process (dy),.ny C R is produced as dj := U,h* 4+ ny, Yk € N, where h* € H
is the estimandum (unknown system) and ny := [ng,ng_1, -+, ng_rp1)? € R,
Vk € N, is the noise vector. The estimation residual function is defined as e:
H—R, h— Ufh — dj, Yk € N. The problem is to approximate h* by the
adaptive filter h € H with the input output relations {(U,,d,)},<k-

4.3 Proposed Pairwise Optimal Weight Realiza-

tion Technique

In Sec. 4.3.1, we first present a simple explicit formula to give the projection
onto the intersection of a pair of closed half-spaces, which are defined by a triplet
of vectors. In Sec. 4.3.2, by using the formula as a basic tool, we present the
Pairwise Optimal Weight Realization (POWER) technique, a computationally-
efficient scheme to yield a good direction of update for more than two half-spaces.

In Sec. 4.3.3, for the proposed POWER technique, we finally present A) geometric
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interpretations, B) weight realizations, and C) optimality.

For convenience, we define, Va,y € H,

M(z,y) = {zeH:(x—y,z—y)=0} CH,
I (x,y) = {zeH: (xr—y,z—y) <0} CH. (4.3.1)

Remark 4.3.1. If x =y, (z,y) =1~ (x,y) = H, otherwise, [1-(x,y) Z x is a
closed half-space with its boundary hyperplane Il(x,y). Pu-(zy)(x) =y holds in

any case.

4.3.1 Projection onto Intersection of Pair of Closed Half-

Spaces

We first define two important operators.

Definition 4.3.2. Given an ordered triplet® (s,a,b) € H* s.t. 11 (s,a) N
I (s,b) # 0, we define the following two operators:

(a) @ : [0,1] x [0,00) X H? — H is defined by Qw,pu,s,a,b) = s+
plwa + (1 —w)b—s], and

(b) P:H? — H is defined by P(s,a, b) := Pr-(s,.a)n-(s,)(8) € H.
We show a simple explicit formula of P(s, a, b) below.

Proposition 4.3.3. Given (s,a,b) € H?, let £ == ||a — 5|, ¢ .= ||b— s|]*, and
n:={(a— s,b—s). Then, the following hold.

(a) The following conditions are equivalent:

Cl: I (s,a)NII(s,b) =0, C2: n=—/EC#0

(b) If I (s,a@) NI (s,b) # 0, we have an expression:

P(s,a,b) = Q(w*, u*, s,a,b), (4.3.2)

2In [5], a different three-point expression is presented for a pair of closed half-spaces. Our
three-point expression covers, e.g., the case b € II™ (a, ¢), while the one in [5] does not.
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where
1, if n > min(¢, ),
po= ] 20— €+ . (4:3.3)
o > 0, otherwise,
1, ifn>¢,
. 0, ) if ¢ >n =, (4.3.4)
C(€—n , :
%~ v < b < min o)

Proof: See Sec. 4.4.1. O

Another characterization of P(s, a, b) is given in Proposition 4.3.10.

4.3.2 Pairwise Optimal Weight Realization (POWER)

The adaptive-PSP algorithm [129] uses weighted parallel projections onto multiple
time-varying half-spaces, which are designed as follows. Define first the following

closed convex sets called stochastic property sets:
Ci(p) :={h € 1 : gi(h) := lex(R)|]” — p < 0},Vk €N, (4.3.5)

where p > 0 is called the inflation parameter. Noting that h* € Ci(p) < ||ng|” <
p, the use of a large p guarantees the membership h* € Cy(p) with high prob-
ability, which leads to stable behavior of the algorithm (see [129]). To reduce
the computational complexity, the projection PHk—(h)(h) = Pey(p)(h), onto an ap-
proximating closed half-space® H, (h) D Cj(p), is used with the following simple
closed-form expression [gi(h) is defined in (4.3.5)]:

o) Goh). fh¢H (R

P = 4 "W R )
h, otherwise,

Ho(h) = {xcH:(x—h, Vg (h))+g(h)<0}. (4.3.7)

30ther closed half-spaces are also presented in [87] [see also Example 6.3.2-(b)], which can
also be used with the proposed weighting technique.
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Note that Vgi(h) = Uier(h), Yk € N. Since Prob{h* € (H; (h)} is ex-
pected to be sufficiently high, P H]._(h)(h) would be a natural candidate for ap-
propriate approximations of h*. For more than two half-spaces, however, finding
the weights to give PnH]f(h)(h) is computationally intensive (cf. [3, p. 86]). In
such a case, more reasonable and strategic weight design than uniform weights
has not yet been established.

As an efficient, aggressive weighting strategy for adaptive-PSP, we propose to
apply Proposition 4.3.3 in a pairwise manner. We call this the POWER technique,
whereby we compute reasonable weights that realize a good direction of update.
How to exploit Proposition 4.3.3 could depend on applications. In the following,

two simple realizations of the POWER technique are presented.

A. POWER-PSP Type I Algorithm

We introduce a realization of the POWER technique named the POWER-PSP
Type T algorithm, which is constructed in M stages. Now, given ¢ € N*, define
the control sequence [22] (Z; =) I,(CO) = {15 k2, skt C N, VE €N, where ¢
(1 =1,2,---,q) denotes the time index used at the Oth stage at time k. We use
herein the notation Z;, for the proposed algorithm instead of Z;, since some of the
overall weights {w](-k)}jejk realized by the proposed algorithm can be zero when
observed data are inconsistent (see Proposition 4.3.7 and the paragraph just after
Algorithm 4.3.4), whereas the weights used in adaptive-PSP are positive. Next
define inductively the control sequence used at the mth stage (m = 1,2,---, M)
as T™ € {(t1,00) ¢ 11,00 € TV 0 # 15} (VE € N) satisfying 1 = [T)] <
|I,EM_1)| < < |I,(cl)| < |I,(CO)| = ¢. The proposed algorithm is given as follows.

Algorithm 4.3.4 (POWER-PSP Type I). Suppose that a sequence of closed con-
ver sets (Cr(p))pen @5 defined as in (4.3.5) and that (Hj_(hk))jeik’ Vk € N, is
defined as in (4.3.7). Let hy € H be an arbitrarily chosen initial vector and
A € [0,2] the step size. Then, a sequence (hy).oy C H is generated iteratively;
at iteration k, hy is updated to hy1 by the following three steps.

Step 1) 0th Stage: Projections onto q Half-Spaces

h) = Py (he), Yk eN, Vi eI, (4.3.8)

’
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where Py, \(hi) is computed by (4.3.6).

Step 2) Ist to Mth Stage: Find a Good Direction
for m:=1 to M do

. LS if iy = —\/J&eman £,
e P(hk,h%:l),h%;”), otherwise,

VEEN, Vo= (11,5) €™, (4.3.9)

2
where 77,(;,'2) = <h§c o hkahk L2 hk> 51“ = Hhk w Bl s and Cl(cT) -

P <hk, hknzl 2 h;:"f;”) 15 computed by Proposition 4.3.3. The reason why we use
P <hk, h,(ch 1), hg:g”) 15 clearly discussed in Remark 4.3.12.

end;

Step 3) Final Stage: Update to the Good Direction

hk+1 = h, + )\k(h hk) Vk € N. (4310)

From Proposition 4.3.3-(a) and Lemma 4.3.9, we can verify that 771(;?) =

gm0 <:> 36 < 0s.t. hy" ) — hy = (h{" ") — hy) # 0, ¥k € N,
Vi = (t1,12) € I , Ym € {1,2,---, M}. This happens when we receive inconsis-
tent data, since the data indicated by ¢, suggests the opposite direction from the
ones indicated by 5. In such a case, the proposed algorithm does not update the
filter, hence there is no problem, which is the same for the POWER-PSP Type I
I algorithm presented in the following.

A systematic design of control sequences in Algorithm 4.3.4 is given below.

Example 4.3.5 (Binary-tree construction).  Given I (= I), Vk € N, we
suggest a systematic design of control sequences (I,Em))%:1 as shown in Fig. 4.3.2-
(a), which we call the binary-tree construction of Algorithm 4.3.4. For example,
with (fk :)I,(CO) = {1,2,---,8}, the control sequences at each stage are given as
7.V = {(1,2),(3,4),5,6), (7,8)}, T,” = {[(1,2),(3,4)], [(5,6), (7,8)]}, and T =
{[l(1,2),(3,4)],1(5,6),(7,8)]] } (I,E?’) is a singleton). Note that the pairs are not
necessarily selected successively, e.g., I,(Cl) can be {(1,5),(2,6),(3,7), (4,8)}.
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Figure 4.3.2: Simple system models with eight parallel processors (¢ = 4) to
implement (a) POWER-PSP I and (b) POWER-PSP IL.
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B. POWER-PSP Type II Algorithm

We introduce an efficient realization of the POWER technique named the
POWER-PSP Type I algorithm. Let us define two groups of closed half-spaces,
say group A: (H;(hk))jeIlfA> and group B: (Hj’(hk))jez;b, where Z74> T8> £
0, 74> ULSB> = I and Z4> N8> = (0. At the 1st stage, for each group, take
the uniformly weighted average of projections onto (I—Ij_(hk))jg;g> (g € {A,B}),
say hi” and h P>, for saving the computational complexity. At the 2nd stage,
the filter hy, is updated by exploiting P(hy, hy"”, ho®>) with Proposition 4.3.3.

The algorithm is given below.

Algorithm 4.3.6 (POWER-PSP Type II). Suppose that a sequence of closed
convez sets (C(p))pen 5 defined as in (4.3.5) and that (H{(hk))jefk, Vk € N,
is defined as in (4.3.7). Let hy € H be an arbitrarily chosen initial vector and
A € [0,2] the step size. Then, a sequence (hy).oy C H is generated iteratively;
at iteration k, hy is updated to hy1 as follows.

1st Stage)

he® = hy + MEE | Y W™ Py, (h) = hi | ,Vk € N, Vg € {A,B},
.El.k<g>

(4.3.11)

where w8 = 1/|I:%7| is the uniform weight (which does not depend on j) and

M:g> 15 a constant to determine appropriate relaxation, defined as

2

> jerse s HPH;(hk) (hi) — hi

if by, Q:L mjellfg> Hj_(hk)a

<g> ._ 27
M= = szel,fg> wljg>PH]f(hk) (hi) — th
1, otherwise.
2nd Stage)
hg, g = —/ 0,
hoys = k S 1k ECr 7# VkEN,
hi + A [P (i, R REPT) — Ry otherwise,

(4.3.12)
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where 1y = (B —hy, B —hy), & = [|REY — k|| and G =
[ni® — bl

The reason why we use P (hy, Ay~ hi>”) is clearly discussed in Remark 4.3.12.

A simple system model to implement Algorithm 4.3.6 is depicted in Fig. 4.3.2-
(b), in which the control sequences are defined as Z;4> = {1,2,3,4} and
B> = {5,6,7,8}. Tt is seen that POWER-PSP 1l is computationally more effi-
cient than POWER-PSP 1. As seen from Propositions 4.3.7 and 4.3.8 in the follow-
ing section, Algorithms 4.3.4 and 4.3.6 can be interpreted as the adaptive-PSP al-
gorithm with specially designed weights. Since adaptive-PSP is derived by APSM
[125], [126], the proposed algorithms inherit the notable properties from APSM,
e.g., monotone approximation (which implies the numerical stability), asymptotic
optimality, strong convergence, etc. (see [126, Theorem 2]). Moreover, the pro-
posed algorithms can be implemented with O(rN) computational complexity by

q parallel processors (see Secs. 4.3.4 and 4.6).

4.3.3 Properties of POWER-PSP I and POWER-PSP 1I

A. Geometric Interpretation

To see how the proposed algorithms and uniform weight PSP (UW-PSP), i.e.,
adaptive-PSP with the weights w](-k) = 1/|Zy|, perform, we show a geometric in-
terpretation of the algorithms in Fig. 4.3.3. The step size and the number of
parallel projections (or the number of closed half-spaces used in each update) are
set to A\, = 1 and q¢ = 4, respectively. The control sequences are designed as
T =19 = {1,2,3,4}, 7" = {(1,2), (3,4)}, and ") = {[(1,2), (3,4)]} for Type
I, and Z;A> = {1,2} and Z; B> = {3,4} for Type I In Fig. 4.3.3, the shaded
triangle area shows the “target” set, i.e., the intersection (.7 H; (hg). The tri-

angle automatically contains Cy := [);.z, Cj(p), which is assumed to contain the

€T},

estimandum h*.

Referring to Fig. 4.3.3-(c), UW-PSP: (i) computes projections (thin dotted
lines) onto four closed half-spaces H;, Hy , Hy and H; (ii) takes the uniformly
weighted average (thick dotted lines); and, (iii) moves in the direction of the av-
erage (arrow). The update is not in a good direction towards the target triangle.
POWER-PSP 1I, on the other hand, achieves a better direction of update than
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UW-PSP. Referring to Fig. 4.3.3-(b), POWER-PSP II: (i) computes the projec-
tions (thin dotted lines); (ii) moves in the direction of the uniformly weighted
average of the projections in each group (two dotted arrows); and, (iii) constructs
new closed half-spaces T~ (hy, hg*>) and TI~ (hg, b ") (bounded by thick dot-
ted lines) and moves towards the projection onto their intersection (thick arrow).
Furthermore, POWER-PSP I achieves the ideal direction in this simple case, i.e.,
the projection onto the target triangle. Referring to Fig. 4.3.3-(a), POWER-PSP
[: (i) computes the projections (thin dotted lines); (ii) computes the projection
(dotted arrows) onto the intersection of each pair of closed half-spaces, (H, , Hy)
and (H, , H, ); and, (iii) moves towards the projection (thick arrow) onto the in-
tersection of new closed half-spaces I~ (hy, h,(:’zm)) and T1~ (hy, h,(:’zm)) (bounded
by thick dotted lines).

B. Weight Realizations

Let us present the overall weights realized by the POWER-PSP T algorithm below.

Proposition 4.3.7 (Weight realization by POWER-PSP I). Let (hg)ren C H
be a sequence of filtering vectors generated by Algorithm 4.3.4. Then, hy,q is
represented in the form of adaptive-PSP with the weights wj(-k) = wy(‘i),M’ J € I,
Vk € N, defined by the following simple recursive form [Ik ={jed: wy('iaM >
0}]:

if 77,(!’7) = — f,E"LL)C,ET) # 0, then w](kb)m =0 (Ym = 1,2,--- M, Vi € I,gm),
Vj € I}), otherwise,

w*? ZfL: (ja')a
wj(i),l = 1- w*a ZfL = ('7j)7 Vj € :Z-ka Vi e Ilgl)a
0, otherwise,
x %, (k «\, %, (K
(k) L w le](',b)l,m—l + (1 —w )M2w](',b?2,m—1

]7L)m )

wrp + (1 — w*)ps
Vj € Lp, Vi = (11, 12) GI,Em), Vm =2,3,--+, M,

where w* for wj(kb)m (Vm = 1,2,---, M) denotes the weight to calculate h,(g)

= P(hy, h,(:"Z;l) RN and it (i =1,2) for wj(kb)m (Ym =2,3,---, M) denotes

) TPk Lo
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i)

Figure 4.3.3: A geometric interpretation of (a) POWER-PSP I, (b) POWER-PSP
II, and (c) UW-PSP algorithms. In this example, II~ (hy, hS’zLQ)) =H;.
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the relazation parameter to calculate h,(cTi_l) [see (4.3.3) and (4.3.4)]. Note that,

since |I,EM)| =1, the overall weights wj(-i)’M, Vj € Iy, do not depend on t.

Proof: The proof is omitted because it is verified by simple algebra. a

The weights w\"), j € Zy, realized by POWER-PSP I satisfy w{" € (0,1] and
Zjelk w](-k) = 1if 7}, # (), which holds with a few exceptions that occur only when
we receive inconsistent data, e.g., n,(i) = — g,gljc,glf # 0, Vi € I,El) (see after
Algorithm 4.3.4).

The weights realized by the POWER-PSP 1I algorithm are given below.

Proposition 4.3.8 (Weight realization by POWER-PSP 0). Let (hg)keny C H
be a sequence of filtering vectors generated by Algorithm 4.3.6. Then, hy,q is

), Jj € Iy, given as

represented in the form of adaptive-PSP with the weights w]('C
follows [Ty := {j € I;*> UI,(CB) : w](-k) > 0}]:

if e = —V/&Ce # 0, then wj(-k) =0,Vj € Ly(=I» UI,EB)), otherwise,

w*M,fA>wk<A>

" : Vj € It
_ (673
R N
O
with o = WM + (1 — w)MFB> and the weight w* to calculate
P (hi, hi* heP7) [see (4.3.4) and (4.3.12)].
Proof: The proof is omitted because it is verified by simple algebra. O

Except for the case n, = —v/&,.(, # 0, we have w](-k) € (0,1]and > 7, w](-k) =1.In
this exceptional case, there is no problem for the same reason as for POWER-PSP
I.

C. Optimality

Let us first present a lemma, followed by a proposition showing the optimality of

the weights given in (4.3.4) in the sense of a certain max-min criterion.

Lemma 4.3.9. The following conditions are equivalent:

C3: T (s,a)NIT (s,b) # 0 and T(s,a) NTI(s,b) =0
C4: F5€(0,1)U(l,00) s.t. s—a =09(s—b) #0.
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Proof: See Sec. 4.4.2. O
Thanks to the geometric simplicity of the half-spaces, we can show the opti-
mality of the weight w* and the relaxation parameter p* (For another investigation

on optimal weight design, see, e.g., [3, Ch. 7]).

Proposition 4.3.10 (Optimality of w* and p*). Given (s,a,b) € H? s.t.
I (s,@)NIL (s,b) # 0, let p(w, 1, 2) := ||s = 2[|*~||Q(w, p, 5, @, b) — z||*. Then,
the following hold.

(a)

W) 3= i P
— 2l )+ (1= )b )]

+2p fwlla— s>+ (1 —w)[|b—s|* +vw)], (4.3.14)

where, referring to Lemma 4.3.9,

0, if II(s,a) N1I(s,b) # 0,
b(w) = 5(1—0)w|b—s|?, if 30 € (0,1) s.t. (s —a) =4d(s—b),
% <1 - %) (1—w)fla—s|?, if30e(l,00) st (s—a)=3(s—b).

(b) (w*, u*) in (4.3.3) and (4.3.4) are optimal in the sense that

~

w,ut) € argmax w, It). 4.3.15

(1) (w,n)€l ,I}X[O,w)¢( 2 ( )
Moreover,

o(w' 1) >0, Yy € [0,27]. (4.3.16)

Proof: See Sec. 4.4.3. O

Intuitively, (w*, u*) achieves a worst-case optimization, or, in other words, (4.3.15)
implies that (w*,p*) is a solution to the max-min problem: firstly minimize
é(w, i, z) over z and then maximize the minimum over (w, ).

The following proposition guarantees the membership of the estimandum h* to

the closed half-spaces constructed by the proposed POWER technique, provided
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that h* belongs to the primitive half-spaces (H;(hk))jefk'
Proposition 4.3.11. Suppose h* € [
Then, the following hold.

Hj (hi) [< h" €Nz, Ci(p)], k €N

ey, je€Zy

(a) For (hk,h ) Vi e I , Ym € {0,1,--- , M — 1} given by POWER-PSP
I, we have h* € 1~ (hy, h,m ).

(b) For (hg, hi™>,h %) given by POWER-PSP I, we have h* €
T~ (hy, o) NI (A, REE).

Proof: See Sec. 4.4.4. O

A remark on the proposed algorithms is given below.

Remark 4.3.12 (On optimality). For the POWER-PSP I algorithm, Ym =
1,2,--- M, P (hk, k"fl 1),h,($;1)> in (4.3.9) and (4.3.10) is the best among

Q(w I, hk,hknz1 D,h,gi'zz D), V(w, ) € [0,1] x [0,00), by Proposition 4.3.10,

and hence it is especially better than h,,(:'Z;l) = Q( hk,hknzl b h,,(cnz;l)) and

B = Q0.1 ki R D) if BT € T (i RTTY) AT (i BT,
Fortunately, h* € 11~ (hy, h/,(c " )) NI (hg, h;u )) is automatically guaranteed by
Proposition 4.3.11, provided that h* € m]ez i (hi). This implies that, at each
stage, the direction of update is improved thanks to Proposition 4.3.3 (POWER).
Hence, POWER-PSP I realizes pairwise optimal weights at each stage. With
a similar discussion, we can say that POWER-PSP II realizes pairwise optimal

weights at the second stage.

4.3.4 Matrix-Form Formulae of Proposed Algorithms

The projection-based formulation of the proposed algorithms is convenient to in-
terpret geometrically (see Sec. 4.3.3.A) but would be unfamiliar to most readers.
Hence, we show the matrix-form formulae of POWER-PSP I and II and their cost
(the number of multiplications/divisions) in Tables 4.3.1 and 4.3.2, respectively.
The presented cost assumes the use of ¢ parallel processors. Note that the com-
putation in the Oth stage of POWER-PSP I (or 1st stage of POWER-PSP II) can

be computed in parallel.
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Table 4.3.1: Efficient computation for the POWER-PSP I algorithm.
Require: the control sequences I,(cm) (m=0,1,--+, M), the inputs U,, the outputs d, (» € I,EO)),
the inflation parameter p, the step size \;, and any hy € H.

Time update at time & Cost
Oth stage: Vi € I,(CO)
=U'h;, —d, rN
k k
o = e~ p k r
al® = U,e if g > 0 .
0 otherwise
(k)
q. . (k)
k) ) ———— ifg,” >0
A= 2lled” L N+1
otherwise
mth stage (m =1, 2 S M) Ve = (g, 10) € T
o® _
(m) /8L1 /8L2 b1 O, form =1
Moo = { (m=1)T _ (m-1) N(+2)
i Ll oo form > 2
( %0 form=1
(m) _ m— m— m— - 2 (m—
SRR, el VP [ 0l 7(2)
+2[/~Lk DR (1 W™D for m > 2
( ||aL2 ||2 for m = 1
(m) _ ( (m—1) (m—1)y12 ~(m—1)
Ck,L = % [/% Lz lm ] fk 2 [ klz (1 l_wk,bg )} Ck,l,z 7(2)
(2, PPy, V0wl g, form > 2
if ) = /600G £0
then ,u,g’L) = w,(c’L) =0, 'y,(m) =0
else
(1 if ) > & or ) > ¢
(m) 2£(m)c(m) _ [g(m) + C(m)]ﬁ(m) 5
[ k, IC k k k, . m . m m
U <, o)
\ 6Ic L Ck: L kyz
1 =
my._ ) 0 if e, = &
“re T SRR !
kit k, k, . .
o -~ if n,(cT) < mln(ﬁl(!f), C,gT))
L 251“ Clc L [fk ' Clc L ]77k L .
M,Sjj) (m) ,(“1 2 +/L,(“)(1 —w,EL))vlgT; ) form=1,2,---, M —1
’y,(gz) = (where *y,(coz = WM =1, 2) |2N+1
et w0+ e (1= My form = M
endif;
Update the filter: 0
hio = hy + %ﬁf‘f)
Total: (BM +2r+1)N
+ 21M +r
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Table 4.3.2: Efficient computation for the POWER-PSP II algorithm.
Require: the control sequences 4>, Z,8> | the inputs U,, the outputs
d, (1 € T7*> UZB>), the inflation parameter p, the step size )y, the

uniform weights w*>, wB> and any hy € H.

Time update at time k

Cost

1st stage:
(a) compute eEk), gL(k), agk), and Bfk), Vi e A UISR>
in the same way as in Table 4.3.1, and V. € Z;;%” (g € {A, B})

(2r + )N +r+1

" = w5 el N +1
Ub(k) — wk<g>gL(k)BL(k) 9
(b) compute Vg € {A, B}
vt = ZLEI,fg> o
k
7Tlc<g> = ZLEI;g> UL( )
ﬁ if 8> £ 0
ME =9 2wz Tk N+1
1 otherwise
2nd stage:
compute
= M;A>;\4§B>V§A>TV§B> N +2
6 = Ml z
G = M w2 2
and fi;, wy, as in ,u,:Z), w,(:f) in Table 4.3.1 6
Update the filter:
hii1 = hg + N MEAZ U2 4+ N (1 — wp) MEB> B> | 2N +4

Total:

(2r +6)N +r
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4.4 Proofs

4.4.1 Proof of Proposition 4.3.3

Let us start with the following simple lemma.

Lemma 4.4.1. Let ITI; (CH), i =1,2, be a closed half-space s.t. TI] NI, # 0.
Then, the following hold.

(a) For any x € H,

PHI_(m)v Z'fiDr[l—(ff”) c Iy,
P, (z) = Pr; (z), if Py (z) € I,
PH10H2 (CL'), Zf PH; (:L') ¢ Hl_ and PH; (iL‘) ¢ H2_7

where 11; (1 = 1,2) denotes the boundary hyperplane of I1; .
(b) If 3z € H s.t. Py-(x) ¢ I, and Py () ¢ Iy, then, Tl N1, # 0.

Proof of Lemma 4.4.1: The proof is omitted because it is verified by simple algebra.
O

The following lemma gives a closed-form formula of Py, qm, () in terms of ,
P, (x), and P, (x).

Lemma 4.4.2. Let (h, hy, hy) € H?*(= H xH xH) satisfy h € {hi, ha}, hy # hy,
and Ty N 1Ty # (0, where 1; :=TI(h, h;) (i =1,2). Then,

Pri,am, () = R+ propt [Wopt By + (1 — wopi ) Ry — B, (4.4.1)
where, with x; == h; —h (i=1,2),

2 2 2 2
2l s> = (o) + 22 ]?) (@1, 22)

o o leal —(@nea’ R
. ol (o) = (@1, 22)) "
T 2@ el ~ (Jol + eal?) () B

_ cos 01 sin 6, (4.4.4)

cos 61 sin @ + cos Oy sin 6’
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Figure 4.4.4: Geometric interpretation of Lemma 4.4.2 in the case of cos#f,
cosfp > 0. Cp [:= ez, Cj(p)] is automatically contained by II7(h,hi) N
H_(h, h2) and H_[h, PﬂlﬂHQ (h)]

cosf; = (1,21 — ) cos By = (@, 25 — 1)

[ENIESR P IREANEEET

sinf; = +/1—cos?6;, i=1,2.

(4.4.5)

Proof of Lemma 4.4.2: By Il N1ly # 0, h ¢ {hy,hs} and h; # hy, ; and x,
are linearly independent, and hence GTG is nonsingular, where G := [z, x,).
Moreover, (cf. e.g., [73, p. 65 Theorem 2])

Pi,rm,(h) =h+G(G"G) (v — G"h), (4.4.6)
(1, h1) : o
where v = By simple manipulation, (4.4.1)—(4.4.3) are deduced
<m27 h’2>
from (4.4.6). The expression in (4.4.4) is obvious by (4.4.5). O

Referring to Fig. 4.4.4, the following remark gives a geometric interpretation
of Lemma 4.4.2.

Remark 4.4.3 (Geometric interpretation of Lemma 4.4.2). Suppose cosf; > 0,
i=1,2. By HAE = HBE = /2 (rad) and the fact of elementary geometry on
inscribed angle, we have HEB = HAB = 01 and HEA = HBA = 0, (see Fig. 4.4.4),
where ABC denotes the inscribed angle between AB and CB for a given triangle
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ABC. Then, noting the areas of the triangles HEB and HFEA in Fig. 4.4.4, we

obtain
Wopt : 1 — Wopy = HBcosty : HA cosfy = cos B sin b : cos 0, sin 0,

which provides a geometric verification of (4.4.4). A similar interpretation is pos-

stble for cosf; < 0 or cosfy < 0.

Proof of Proposition 4.3.3:
Proof of (a): By (4.3.1) and the equality condition in the Cauchy-Schwarz in-

equality, it is sufficient to show

Cl: (s—a,y—a)>0or (s—b,y—b)y>0, VyecH
& €20 F9<0st. s—a=0(s—b)#0. (4.4.7)

(I) Proof of C2 = C1: Assume C2 and (s — b,y — b) < 0. Then, we obtain

(s—a,y—a)=06((s—b,y—b) —(s—b,a—b)) > —0(s—b,a—0b)
=—0(s—b,s—b—(s—a))=—6(1-10)|s—b|>>0.

() Proof of C1 = C2: By the contraposition, we will show

[36 > 0s.t. s—a=0(s=b)] or V§ €R, s—a # i(s—b)]
= Jy € Hst. (s—a,y—a) <0and (s—b,y—b) <0. (4.4.8)

(i) Assume 39 > 0s.t. s —a = (s — b). Then, we have

(s—a,y—a)=0(s—by—s+s—a)=0((s—by—s)+3|s—b|°).

Letting specially y = s — (1 + J)(s — b) € H yields

(s—a,y—a)=(s—by—b)=—d|s—b|* <0.
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(ii) Assume s —a # (s — b), V6 € R In this case, we have

dim{R([ (s —a)' ])}:2, henceR([ (s —a)" ]) > [ (s-a)a
(s —b)T (s —b)T (s —b)Tb

where R(-) denotes the range space of the columns of a matrix. This

implies
(s —a)” | (s—a)Ta
HyEHS.t. [(S_b)T]y_[(S—b)Tb],

from which it follows that Jy € H st. (s—a,y—a) =
(s — b,y — b) =0 [This implies II(s,a) N II(s, b) # ( by (4.3.1)].

The above discussion verifies (4.4.7).
Proof of (b):

(D)

Assume 1 > (. In this case, (s — b,a — b) < 0, which implies a € 1" (s, b)
by (4.3.1). Hence, we have P(s,a,b) = Py-(s4)(8) = @, where the first

equality follows from Lemma 4.4.1-(a) and the second from Remark 4.3.1.
Assume (¢ >)n > &. This case is proved in analogy with (I).

Assume 1 < min(£,¢). In this case, we have (s —b,a—b) > 0 and
(s —a,b—a) > 0, which implies Py-(54)(s) = a ¢ II7(s,b) and
Pi-(sp)(s) = b ¢ II"(s,a), respectively. Thus, by Lemma 4.4.1-(a),
Pri-(s,a)n11(s,6)(8) = Pri(s,a)nmi(s,s)(8), which allows us to use Lemma 4.4.2.
The equations (4.3.2)—(4.3.4) for this case are readily verified by substituting
(1, @) =1, ||&1|” = €, and ||@,|° = ¢ into (4.4.1)—(4.4.3) in Lemma 4.4.2.
All that we have to do is to check that the conditions of Lemma 4.4.2 are

satisfied, i.e.,

s¢{a,b} and a#b (4.4.9)
[I(s,a) NII(s,b) # 0. (4.4.10)

By Lemma 4.4.1-(b), it is not hard to verify (4.4.9) and (4.4.10), which
completes the proof. O

|
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4.4.2 Proof of Lemma 4.3.9

(I) Proof of C4 = C3: Assume C4 holds. In this case, we have n =
d|ls = b||> > 0, which implies that n # —/&C, leading to II"(s,a) N
1~ (s, b) # () by Proposition 4.3.3-(a). Moreover,

M(s,a) = {xeH:(s—bx—s+0d(s—b)) =0}
= {a:E?-[:(s—b,m—b>:(1—5)||s—b||2},
[I(s,b) = {x e H:(s—b,x—b) =0}, (4.4.11)

from which it follows, from (1 — ) ||s — b||* # 0, that II(s, a) N II(s, b) = 0.

() Proof of C3 = C4: Assume C3. In this case, by (I)-(ii) in the proof of
(a) in Sec. 4.4.1, 30 € R s.t. s —a = (s — b). It is obvious that § & {0,1}.
Hence, it is sufficient to verify § ¢ (—o00,0). Suppose § € (—o00,0). Then,

we obtain

I (s,a) = {z€eH:{(x—a,d(s—>b)) <0}

= {zeH:(x—b+b—a,s—b) >0}
= {zeH:(x—bs—b)>(a—b,s—b)}
= {ZzeH:(x—bs—b)>(1-0)|s—b|},

where (1 —6)[|s — b||> > 0. This implies II (s, a) NI~ (s,b) = (, which
violates C3. Hence, we can verify 6 € (0,1) U (1, c0). O

4.4.3 Proof of Proposition 4.3.10
Proof of (a): For any z € [~ (s,a) N 11~ (s, b),

ow,mz) = |ls =z~ lls =z +pwa+ (1 -wb— |’
= 1’ |lw(a—s)+(1-w)(b-s)
+2u (s —z,w(s—a)+ (1 —w)(s—0b)). (4.4.12)
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Here,

(s —z,w(s—a)+ (1 —w)(s—0))

=w(s—a+a—z,s—a)+(1-w)(s—b+b—2,s—b)

—w|s—al’+(1—-w)|s=b|]°—{w(z—a,s—a)+ (1 —w)(z—b,s—b)}.
(4.4.13)

By (4.4.12) and (4.4.13), all that we have to prove is

min b(w, z) = (W), (4.4.14)

z€M—(s,a)NII~ (s,b)

where §(w,2) == —~w(z —a,s—a) — (1 —w)(z —b,s — b). By a = Pri-(s,a)(8)
and b = P (55)(s) (see Remark 4.3.1),

@(w, z) > 0,Vz eIl (s,a)NII"(s,b). (4.4.15)
(I) Assume II(s,a) NTI(s,b) # (). In this case,
@(w, z) =0,Vz € lI(s,a) NII(s, b). (4.4.16)

By (4.4.15) and (4.4.16),

min b w,z) =
z€ll~(s,a)NII—(s,b) w( )

() Assume I1(s,a)NI(s,b) =0 [< 35 € (0,1)U(1,00) s.t. s—a = d§(s—b) #0
by Lemma 4.3.9]. Referring to (4.4.11),

I (s,a)={xeH:(s—bx—b)<(1-0)[s— b||2}. (4.4.17)

(i) Assume & € (0,1). In this case, (1 — &)]||s — b||> > 0, which yields
II-(s,b) C II"(s,a), and thus

I (s,a)NII (s,b) =11 (s,b). (4.4.18)
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On the other hand,

b(w,z) = —w(z—b+b—a,6(s—b))— (1 —w)(z—b,s—b)
= wW—1-90w)(z—bs—b)+ow(a—s+s—b,s—b)
= (w—1-6w){z—bs—b)+6(1—0wls—b|>.

By w € [0,1] and § > 0, we have w — 1 — dw < 0, which yields, with
(4.4.18),

z/p\(w, z) > 6(1-0)w||s — b||”,Vz € TI" (s, @) (s,b) (=1 (s, b)),

where the equality holds if z € II(s,b) C II7(s,a) N 11~ (s, b). Hence,

we can verify

min D(w, z) = 6(1 — d)w||b— s|.

z€Il~(s,a)NII~(s,b)

(ii) Assume 0 € (1,00). In a similar way to (i), we can verify

min _Gwn) =5 (1-5) - w)a -l

zell~(s,a)NII~(s,b) ) 0
Proof of (b):

(I) Assume II(s,a) NII(s,b) = 0. In this case, by Lemma 4.3.9, 36 € (0,1) U
(1,00) s.t. s —a=46(s —b) #0.

(i) Assume 6 € (0,1). In this case, n > &, hence (w*, p*) = (0,1) by
Proposition 4.3.3. From (I), we obtain

dw,p) = —p{pws+1—-w)?|b—s|* —2ws?+1—w+d1—dw]|b—s|*}
2
= 1—w)2lb— sll? =
(wWo+1—w)”||b— s u(ﬂ w5—|—1—w>

1 2
= —(w5+1—w)2||b—3||2 (M-m) +||b—8||2

By (wd+1—w)?|b—s|>>0and wi+1—w > 0, ¢(w,p) is maxi-
mized by p = 1/(wd + 1 — w),Vw € [0, 1], from which it follows that
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(w*, u*) € argmaX(w 1)€[0,1]x[0,00) a(w,u) and a(w*,u*) =||b-— s||2 > 0.
By ¢(w*,0) = (w 21*) =0, (4.3.16) holds.

(ii) Assume ¢ € (1,00). In this case, n > (, hence (w*,pu*) = (1,1). In a

similar way to (a), we obtain

Benn) = lla = s =+ (1= )/ la = [0 =

By [w+ (1 —w)/6]|la—s|>> 0and w+ (1 —w)/d > 0, plw,p) is

maximized by

m, Vw € [0, 1],

from which it follows that

w*, ) € argmax Aw,
(i) (w,u)E[gl]X[OyoO)d)( W

and ¢(w*,i*) = [la — s[|” > 0. By ¢(w*,0) = d(w*, 2u") = 0, (4.3.16)
holds.

(II) Assume II(s,a) NII(s,b) # 0. In this case, by (I),
Dw, 1) = =1 lw(@ = 8) + (1 —w) (b= s)|" + 2p [wla — 5] + (1 —w) b - 5]

Here, it is easily verified that ||w(a — s) + (1 — w)(b— 8)||> = 0 < one of
the following conditions hold:

(i) @ =b=s{= d(w,p) :AO, Vw € [0,1], Vi € [0,00)}
i)a=s#b, w=1 {<:>q5£w,u):0, V€ ]0,00)}
(i) b=s#a, w=0{& ¢(w,p) =0, Yu € [0,00)}.

Since i): a(w,O) =0, Yw € [0,1], and ii): max(, u)e[0,1]x[0,00) a(w,u) > 0 [by

i)], we can assume |lw(a — 8) + (1 — w)(b — s)||> # 0 in the following.
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Now, we obtain

~

ow,p) = —llwa—s)+ (1 —w)(b-s)| (u

_wlla—sl+(1-w) ||b—s||2)2
|lw(a—8) + (1 —w)(b— s)|
[wlla = s + (1 - w) |l — s|*]’

T ela—s)+ Q-2 b8

(4.4.19)

which yields

*

oy

2 2
_ 1— b-— -
_ wlla—s||” +( w) || 3||2 € arg max o(w, 11).
fo(a—s)+ (1-w)(b—s)|” b

All  that we have to prove for (4.3.15) is that w* €

arg maxXueo,1] d(w) and p. = p*, where ¢(w) = gg(w, ). It is veri-
fied that
G = LllazslPr-wlb-sl]  fwe+ (1 —w)p
lo(@—s) +(L-w)b—s)" w4201 -wn+ (1 -w)?
w(E—¢) +¢I°

T2 - Quw A

of which the derivative is as follows:

[denominator of 8@3((;:})} = Jw(@—s)+(1—w)(b-2s)]" >0
[mumerator of 2] = 2 1u(e—0) 4 €16~ [(6+¢2me” + 20— +]

~2[w(E = Q)+ lE+ ¢ —2mw+ (n-¢)]
= 2w(E- O+ {[E=Om—0) - ¢(E+C—2n)]w
+(E=QC - (=0}
= 2[ue+(1-w)q{ [ErO — 26uwrc(E-m).
= f(w)

(4.4.20)
where it is obvious that

wé+(1—w)¢ > 0. (4.4.21)
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(i) Assume 1 < min(§, ). In this case, it is not hard to see that £, > 0,
from which it follows that n(§ + () —26¢ =&(n—¢) +((n—&) < 0.

Hence, we have

f(W){ =0 des 2§C—77(§+C)(_ ) (4.4.22)

<0, otherwise.

By (4.4.21), (4.4.22), and ((£—n)/[26¢—n(£+¢)] € (0,1), we obtain

w* S Sall) = arg max ¢(w).

TAUC—(E+Q)n wlio]

Moreover, we have

- [26¢ — (£ 4+ On][(§ —n)CE+ (¢ —n)é(]
N (€ = n)?¢%E +2(§ —n)(C—n)¢&n + (¢ —n)*EX
_ 26 = (€ + Onl(€ + ¢ —2n)
€= C+2(€ =) —mn+((—n*

where

(E=m?C+2E =) —nmn+(C—n)*
= =+ =%+ E=—C—E+) = (E=n)(C—n)(E+C—2n)
= (E=n+C—n) [(E=mC+ (C=n)E — (E=n)(C—n)] = (E+ ¢ —2n)(EC —nP),

from which it follows that

= K EHOn L
v £C—1? '

(ii) Assume n > € (= 7 < ¢). In this case, £(0) = C(6—n) < 0, F(1) =
&(n—¢) < 0, which implies that f(w) < 0, Yw € [0, 1], since f(w) is
monotone. Hence, by (4.4.20) and (4.4.21), we have d¢(w)/dw < 0,

Vw € [0,1], from which it follows that w* = 0 € argmax,cp.] ¢(w),

(iii) Assume 5 > ¢ (= 1 < €). In a similar way to (ii), we have d¢(w)/dw >
0, Vw € [0, 1], from which it follows that w* = 1 € argmax,¢jo,] g(w),
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Hg =1 = "

~

Finally, in cases (i)(iii), by (4.4.19), ¢(w*, i) is a quadratic function in terms

~

of u with its maximum at g = p*. Thus, over [0, 2u*], ¢(w*, ) is minimized
by p =0 or p = 2u*, and moreover, g(w*,O) = 0 by (4.3.14). This verifies
(4.3.16), which completes the proof. a

4.4.4 Proof of Proposition 4.3.11

Proof of (a): The proof is given by mathematical induction on m.

(I) m = 0: By the assumption and (4.3.8), we have <h;,c - hg?z, h* — h,(coz> <

0, Vi € I,EO), which shows nothing but h* € I1~(hy, h,g??), Vi € I,EO).

() Assume h* € T~ (hy, h{" V), Ve € 7", for some m € {1,2,---, M — 1}.

(i) ™ = — /™™ £ 0, then it is obvious that h* € II" (hy, h{")) =
H [see (4.3.9)],

(ii) otherwise, by (4.3.9) and Definition 4.3.2,

hgﬁ) = PH* (hm—l))(hk:)- (4423)

m—1
(hi b7 )NI (B by

By (4.4.23) and the assumption of (), we have
<hk — h,g?z), h* — h,(:Z)> < 0, which shows nothing but
h* € I (hy, hy").

(i) and (ii) verify h* € II™ (hy, hy"), Ve € T,™.

(I) and (II) complete the proof.
Proof of (b): Let py® := ng;p w,fg>PHJ¢(hk) (hy). Then, Vg € {A, B}, we

have

(hy — b8 h* — h87) = (= M* (p®” — hy), h* — hy, — M5 (p®” — hy))

2
= M;* [ Z s PH]f(hk) (hi) — th — <p,jg> — hy, A" — h,k> ,

. <g>
JEL,

(4.4.24)
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where

<p]jg> - hka h* — hk>

= 3 (P () = b0 = Py () + Py ()~ )

JETSS
2
_= Z w;g> PH;(hk) (hk) - hk
JETSE
- 3w <h* — Py () b = Py~ (hk)>. (4.4.25)
JETSE

By (4.4.24), (4.4.25), and the assumption of Proposition 4.3.11,

we  obtain  (hy —hy®, h* — h;®7) = M Yjerce wi®
<h* — Pty (i) ok = Py (hk)> < 0, which verifies B* € TI~(hy, B25).
O

4.5 Numerical Examples

In this section, POWER-PSP T and POWER-PSP 1 are compared with the fol-
lowing algorithms: UW-PSP, APA, regularized RLS*, and FNTF. To examine the
potential ability of the proposed algorithms, simulations are performed for the
system identification problem to estimate h* € R* (N = 64) with the USAST®
input signal (colored and wide sense stationary) under a silent environment with
SNR := 10log,, (E {72} /E {n2}) = 100 dB, where z; := (u;, h*) and E{-} de-
notes expectation. We evaluate the system mismatch defined at iteration k as
10log,, ||R* — hi||> /||R*]|* [dB], ¥k € N. Note that, in Chapter 5, it is shown that
the proposed technique also exhibits excellent performance for the (more practi-
cal) stereo echo cancellation problem with h* € R?°° SNR = 25 dB, and speech

4 Although the regularized RLS algorithm is computationally-intensive (since efficient calcula-
tion by the matrix inversion lemma can not be utilized because of the regularization), we employ
it to examine the potential of the proposed technique. Moreover, in the present simulations, we
employ the normal APA rather than its computationally-efficient version called FAP [43], since
it is reported that such efficient strategies result in somewhat inferior or similar convergence rate
to the original exact algorithms [42, Ch. 2].

®The USASI (USA Standards Institute) generation routine is characterized as an ARMA
model, which can be found at http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/txt/usasi.txt (see
also [129]).
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Figure 4.5.5: Performance of the proposed algorithms versus UW-PSP. r = 1 and
p = 0 for all algorithms. For POWER-PSP I, (a) ¢ = 8, A\, = 0.4, and (b) ¢ = 32,
A = 0.1. For POWER-PSP I, (a) ¢ = 8, A\, = 0.6, (b) ¢ = 32, A\, = 0.2, and (c)
q =64, \y = 0.2. For UW-PSP, (a) ¢ =8, A\, = 1.0, and (b) ¢ = 32, A\, = 0.2.

(non-stationary) inputs.

4.5.1 Proposed versus UW-PSP Algorithm

The stochastic property sets are designed, for all employed algorithms, with » =1
and p = p3 (= 0) (see [129]). The control sequences are designed as (i) Z; =
{k,k—1,---  k—q+1} for UW-PSP, (ii) the binary-tree construction for POWER-
PSP I (Example 4.3.5) with Z, identical to Z, for UW-PSP, and (iii) Z;*> =
{kk—1,- k—q/2+1} and Z7®> = {k—q/2,--- ,k —q+ 1} for POWER-PSP
II.

The results are depicted in Fig. 4.5.5. We observe that the proposed algorithms
significantly improve the speed of convergence, as expected by the discussion in
Sec. 4.3.3.
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Figure 4.5.6: Performance of the proposed algorithms versus APA. For APA, (a)
r =4, \ = 0.2, and (b) r = 32, Ay = 0.002. For POWER-PSP I, (a) ¢ = 4,
A, = 1.0, and (b) ¢ = 128, Ay = 0.05. For POWER-PSP 11, (a) ¢ = 64, A\;, = 0.6,
and (b) ¢ = 128, Ay = 0.6. The other parameters are the same as in Fig. 4.5.5.

4.5.2 Proposed versus APA, Regularized RLS, and FNTF

For APA, we set (a) r = 4, Ay = 0.2, and (b) r = 32, Ay = 0.002 (see
[129, Sec. II-B]). For regularized RLS, we utilize the inverse of the regular-
ized sample covariance matrix Ry = ARy_; + uzul + 6I, Vk € N. Here,

A=1-1/(3N) =0.99479 € (0, 1) is the forgetting factor and § = 0.04 ~ 0.00560?2

2

2 is the variance of input data (ug)gen

is the regularization parameter, where o
(the choice of 0 < § < 0.01¢2 is recommended [56, p. 570]). The matrix is initial-
ized as Ry = diag{\¥ "1 AN"2 ... "1} [40]. For FNTF, we set (a) Lpxtr = 20,
A=1-1/(3N) =0.99479, and (b) Lpxtr = 64, A =1—1/(9N) = 0.99826, where
Lentr € {0,1,---, N} is the order of the AR input process modeled in FNTF.
(Although the order of the AR input process is denoted by “N” in [82], the order
of FNTF is expressed as “Lpntr” to distinguish from the filter length “N”.) In
the prediction part, we employ the method in [83, Table I] with a modification
for stabilization by following the recommendation in [82]; we use the backward

. . b _ ! . .
prediction error e} . (T) = (T — Lextr) — Bl e 11X Lpxre,r instead of its
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Figure 4.5.7: Performance of POWER-PSP I versus and regularized RLS and
FNTF. For regularized RLS, A = 1-1/(3N), § = 0.04. For FNTF, (a) Lgxrr = 20,
A=1-1/(3N), and (b) Lpxtr = 64, A =1 —1/(9N). For POWER-PSP I, (a)
q =128, \y = 0.05, (b) ¢ = 256, A\, = 0.05, and (c¢) ¢ = 512, A\, = 0.05. The other
parameters are the same as in Fig. 4.5.5.

equivalent form €} (T) = —ABpppe (T — 1)WLLFF§TTFF:11’T (see [82, Eq. (8) and
Table 1] for the definitions of the undefined variables). It is reported that the
FRLS algorithms, including FNTF, have a tendency to diverge [50,83]. Such di-
vergence phenomena were observed in our experiments, and thus, we reinitialize
the parameters for prediction based on the monitoring strategy used in [14, 23, 82].

A comparison with APA is depicted in Fig. 4.5.6, and one with regularized
RLS and FNTF in Fig. 4.5.7. We see that the proposed algorithms outperform
the other existing algorithms. Detailed discussion of the simulation results along

with the computational aspects follows below.

4.6 Discussion

The computational complexities of the algorithms used in the simulations are
as follows: for POWER-PSP I, (3M + 2r + 1)N + 21M + r (M = log,q); for
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POWER-PSP 1, (2r 4+ 6)N + r (see Sec. 4.3.4); for UW-PSP, (2r + 4)N + r; for
APA, (r? +2r)N + r® +r [97, p. 244]; for FAP, 2N + 20r [50, p. 28]; for RLS,
N?+45N [97, p. 247]; for FNTF, 2N +9Lpxtr [50, p. 28]; and, for regularized RLS,
N3 (computation for the inverse of N x N matrix). For the proposed algorithms
and UW-PSP, being inherently parallel, we show the complexity with ¢ parallel
processors being engaged. The complexities are graphically drawn in Fig. 4.6.8.
The horizontal axis corresponds to the value assigned to the parameter of which
an increase is expected to improve the performance: ¢ for POWER-PSP I, II, and
UW-PSP; r for APA and FAP; and, Lgxtr € {0,1,---, N} for FNTF. Note that
we fix r = 1, thus the computational complexities of POWER-PSP I and UW-
PSP are constant in terms of ¢. We see that an increase of ¢ causes a very slight
increase of complexity, even compared with the efficient FAP algorithm. Another
remarkable feature of adaptive-PSP (including POWER-PSP I, 1) is that the
algorithm can normally perform with just a slight loss in convergence speed in a
situation when some of the engaged processors are damaged. This implies that
the algorithm is endowed with a fault-tolerance nature thanks to its inherently
parallel structure [4, 17,22, 24]. Tt should be mentioned that the other conventional
algorithms, being not inherently parallel, can of course be implemented somehow
in parallel. However, we omit to show the complexity with parallel processors for
those algorithms, since it depends on many possible ways to decompose tasks.
From Figs. 4.5.5 and 4.5.6, we see that the POWER-PSP 1II shows excellent
convergence behavior for ¢ = 64 and ¢ = 128 with low computational cost. More-
over, from Figs. 4.5.6 and 4.5.7, POWER-PSP I achieves faster convergence even
compared with the regularized RLS algorithm. Among all our experiments, the
proposed algorithms always exhibited stable behavior in steady-state, while this
did not always occur for APA and FNTF. Actually, APA shows certain instability
when we use a relatively large step size for a large r (note: we use a common step
size for POWER I with ¢ = 128, 256, and 512). This is why we choose such a
small step size Ay = 0.002 for APA (r = 32), which results in the slow convergence
at the beginning (as observed in Fig. 4.5.6). On the other hand, in Fig. 4.5.7, we
observe non-negligible spikes on the curve of FNTF, which indicates the intrinsic
instability of the FRLS algorithms (see, e.g., [11, p. 77], [50], [42, p. 40]). A certain
loss for FNTF is observed in the initial convergence speed, even though we use

the initialization recommended in [83] and carefully tuned the forgetting factor A.
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Figure 4.6.8: Computational complexity of the adaptive filtering algorithms for
N = 64. For the proposed algorithms, we set » = 1 and use ¢ parallel processors.

This observed loss in a stationary environment stems from the same reason as the
tracking inferiority of RLS in nonstationary environments with a constant A\ (as
remarked, e.g., in [54,57, 71]), since initialization contains, in general, some model

mismatch.

4.7 Conclusion

To the best of the authors’ knowledge, such excellent performance, achieved by
the proposed algorithms with a large ¢, has not yet been previously reported. We
believe that the POWER weighting is a promising adaptive filtering technique,
for possibly nonstationary inputs, that satisfies the following requirements: (i)
fast convergence, (ii) linear computational complexity, (iii) numerical stability,
and (iv) robustness against noise. Robustness against noise is naturally expected
because of the use of stochastic property sets and, in [134], it has been verified

in its application to stereo echo cancellation [108]. We finally remark that the
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technique will likely be a useful tool in static convex feasibility problems®.

6The convex feasibility problem is to find a point in the nonempty intersection of a fized
collection of closed convex sets [4,22,24]. Its applications include matrix estimation, image
reconstruction, the inverse problem in radiation therapy treatment, etc. [22].






Chapter 5

Efficient Fast Stereo Acoustic
Echo Cancellation Based on
Pairwise Optimal Weight

Realization Technique

Summary

In Stereophonic Acoustic Echo Cancellation (SAEC) problem, fast and accurate
tracking of echo path is strongly required for stable echo cancellation. In this chap-
ter, we propose a class of efficient fast SAEC schemes with linear computational
complexity (w.r.t. filter length). The proposed schemes are based on Pairwise
Optimal Weight Realization (POWER) technique, thus realizing a “best” strat-
egy (in the sense of pairwise and worst-case optimization) to use multiple state
information obtained by preprocessing. Numerical examples demonstrate that the
proposed schemes significantly improve the convergence behavior compared with
conventional methods in terms of system mismatch as well as Echo Return Loss
Enhancement (ERLE).
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5.1 Introduction

The ultimate goal of this chapter is to develop an efficient adaptive filtering
scheme, with linear computational complexity, to stably cancel acoustic cou-
pling, from loudspeakers to microphones, occurring in telecommunications with
stereophonic audio systems. This acoustic coupling is commonly called acous-
tic echo (we just call it echo in the following). The Stereophonic Acoustic Echo
Cancellation (SAEC) problem has become a central issue when we design high-
quality, hands-free and full-duplex systems (e.g., advanced teleconferencing etc.)
[8,11,13,16,34,37,42,44,45,65,107,108,111]. A direct application of a monau-
ral echo canceling algorithm to SAEC usually results in unacceptably slow conver-
gence [37,107,108], and this phenomenon is mathematically clarified that the nor-
mal equation to be solved for minimization of residual echo is often ill-conditioned
or has infinitely-many solutions due to inherent dependency caused by highly

cross-correlated stereo input signals [13] (see Sec. 5.2.2).

Decorrelation of the inputs is a pathway to fast and accurate tracking of
echo paths (impulse responses), which is necessary for stable echo cancellation
[34,44,66,112]. A great deal of effort has been devoted to devise preprocess-
ing of the inputs [2,12,13,46,47,49, 60, 66,98,108,112] (see Sec. 5.2.3). In other
words, these preprocessing techniques relax the ill-conditioned situation with use
of additional information provided artificially by feeding less cross-correlated in-
put signals. Based on the preprocessing [13], real-time SAEC systems have been
effectively implemented, e.g., in [16,34]. Under rapidly time-varying situations,
however, further convergence acceleration is strongly required. Unfortunately,
an increase of decorrelation effects by preprocessing may cause audible acoustic-
distortion or loss of stereo sound effects, thus the preprocessing is strictly restricted
to only slight modification of the input signal. The remaining major challenges in
SAEC with preprocessing are twofold: (i) fast tracking of the echo paths within
the above restriction on audio effects and (ii) low computational complexity due to
necessity to adapt 4 echo cancelers with a few thousands taps [42] (see Fig. 5.1.1).
Now, the time is ripe to move from the early stage of devising preprocessing
techniques to the next stage: utilize the additional information provided by pre-

processing to the fullest extent possible.

Effective utilization of the additional information is a key to achieve the goal
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Figure 5.1.1: Stereophonic acoustic echo canceling scheme; Unit 1 is a prepro-
cessing unit (see Sec. 5.2.3). Note that the system is not limited to this special
structure but can be any appropriate structure.

shown in the beginning of this introduction. We formulate the SAEC problem
as a time-varying set-theoretic adaptive filtering, i.e., approximate the estiman-
dum h* (system to be estimated, true echo paths) as a point in the intersection
of multiple closed convex sets that are defined with observable data and contain
h* with high probability (see Sec. 5.3.1). As a preliminary step [138], we found
a clue to maximally utilize the information given by the preprocessing [66, 112].
The preprocessing in [66,112] alternately generates certain two states of inputs
(see Sec. 5.2.3) and it is reported that it achieves faster convergence in system
mismatch!, at the expense of slower convergence in Echo Return Loss Enhance-
ment (ERLE), than other major preprocessing techniques such as in [13]. The
scheme? proposed in [138] utilizes the information from the two states of inputs
simultaneously at each iteration. The two states can be associated with two states
of solution sets (mathematically linear varieties [13]), say V and V. By using the
adaptive Parallel Subgradient Projection (PSP) algorithm [129] (see Sec. 5.3.1),

the scheme fairly reduces the zig-zag loss® shown in Fig. 5.1.2-(b), and the direction

'Recall that the fast and accurate estimation of h* is necessary in SAEC, hence system
mismatch is a very important criterion.

2The scheme is derived from the Adaptive Projected Subgradient Method [124,126], a unified
framework for various adaptive filtering algorithms, which has also been applied to the multiple
access interference suppression problem in DS/CDMA systems successfully [20, 132] (see Chapter

3The loss is caused by the “small” angle between V and V due to the restriction of “slight”
modification in preprocessing (see e.g., [30, p.197] for angle between subspaces or linear vari-
eties). Similar zig-zag behavior can be observed for alternating projection methods known as
Kaczmarz’s method or, more generally, the Projections Onto Convex Sets (POCS) in convez
feasibility problem; find a point in the nonempty intersection of fized closed convex sets (see
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Figure 5.1.2: A geometric interpretation of existing methods: (a) straightforward:
straightforward application of monaural scheme; (b) conventional: preprocessing-
based approach with just one state of inputs at each iteration; and (¢) UW (Uni-
form Weight)-PSP: preprocessing-based approach with two state information at
each iteration [138]. The solution set V is periodically changed into % by prepro-
cessing (V and V are linear varieties). Note that each arrow of “conventional”
stands for the update accumulated during a half cycle-period in which the state
of inputs is constant.

of its update is governed by certain weighting factors [see Fig. 5.1.2-(c)]. However,
the update direction realized by the uniform weights does not sufficiently approx-
imate ideal one. Recently, an efficient strategic weight design called the Pairwise
Optimal Weight Realization (POWER) has been developed in [135,137] for the
adaptive-PSP algorithm. The POWER technique realizes a best strategy (in the
sense of pairwise and worst-case optimization) for the use of multiple information
to determine the update direction. This suggests that further drastic acceleration
is highly expected by exploiting POWER (see Fig. 5.1.3).

In this chapter, we propose a class of efficient fast SAEC schemes that further
accelerate the method in [138] by employing POWER with keeping linear compu-
tational complexity. In fact, the POWER technique exerts far-reaching effects in a

e.g., [22] and Sec. 5.3.1). In the case of two subspaces M; and Ma, the rate of convergence of
alternating projection methods is exactly given as (cos(M;, M2))2*~1 [30, 9.31 Theorem], where
cos(+, -) denotes the cosine of the angle between two subspaces and k the iteration number. This
provides theoretical verification to slow convergence caused by the zig-zag loss when the angle
between two subspaces is small.
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Figure 5.1.3: The direction of the proposed technique.

general adaptive filtering application, especially when the input signals are highly
correlated. Hence, as seen from Fig. 5.1.2, POWER is particularly suitable for the
SAEC problem. As presented in the previous chapter, the POWER technique is
based on a simple formula to give the projection onto the intersection of two closed
half-spaces that are defined by three vectors (see Proposition 4.3.3). We propose
two schemes in the proposed class. The first scheme (Type I) exploits the for-
mula in a combinatorial manner [see Fig. 5.3.5-(a)]. The second scheme (Type II),
on the other hand, exploits the formula just once after taking respective uniform
averages of projections corresponding to each state of inputs [see Fig. 5.3.5-(b)].
The latter scheme is computationally more efficient than the former one, while
overall complexities, including the weight design, of both schemes are kept linear
w.r.t. the filter length [see Remark 5.3.3-(a)].

Numerical examples demonstrate that notable improvements are achieved, in
system mismatch as well as ERLE, by the use of POWER in place of the uni-
form weights. Other possible ways to reduce the zig-zag loss would be to employ
the Affine Projection Algorithm (APA) [58,89] or the Recursive Least Squares
(RLS) algorithm [56,97] (The essential difference between our approach and APA
is clearly described in Sec. 5.3.2). The proposed schemes are also compared with
such other schemes, all of which employ the same preprocessing technique as the
proposed schemes do. From our numerical experiments, we verify superiority of

the proposed method. Moreover, we confirm that the proposed schemes exhibit
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excellent tracking behavior after a change of the echo paths.

5.2 Preliminaries

5.2.1 Stereo Acoustic Echo Cancellation Problem

Let Liyan € N* denote the length (of the impulse response) of the transmission
path and N € N* the length of the echo path. For simplicity, let the length of
the adaptive filter be N (Analyses for more general cases are presented in [13]).

Referring to Fig. 5.1.1, the signals at time £ € N are expressed as follows.

e speech vector: s;, € Rbtran

e ith transmission path: ;) € R'*= (i =1,2)

e jth input: ug) =510, €R

e ith input vector: 'u,,(:) = ,(:), ugﬁl, e ,u,(szH]T c RN

e preprocessed version of u,(cl): ﬁ,(el) eRY
av
e input vector: uy 1= ol eH =RN

e

k
e input matrix: Uy := [ug, Up_1,-+* , Up_rs1] € REVXT (r € N¥)
e ith echo path: h{; € RV (i=1,2)

: . h,

e estimandum: h* := . eH

(2

’1(1)
e adaptive filter (echo canceler): hy := hé) eEH
k

e noise: ny, := [Ny, Np_1, -+ ,Ng_r11)’ ER

e output: d; := U;;Fh* +n, eR

e residual error function: ez(h) :== U} h —d;, € R

Here, H(:= R*") is a real Hilbert space equipped with the inner product (z,y) :=
x'y, Vo,y € H, and its induced norm ||z|| := (a:T:c)l/Q, Vo € H.

The goal of the SAEC problem is to cancel the echo stably; i.e., ul h* —u} hy, ~
0, Vk € N. Since only u, and dj are observable, a common alternative goal is to

suppress the residual echo; i.e., er(hy) ~ 0, Vk € N.
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5.2.2 Non-Uniqueness Problem

In 1991, Sondhi and Morgan found unacceptably slow convergence phenomena in
SAEC [107] and, in 1995, Sondhi, Morgan and Hall showed that the primitive
solution set, obtained from the normal equation to be solved for minimization of
the residual echo, is too large and it depends on the transmission paths (due to
inherent dependency caused by highly cross-correlated stereo input signals) [108].
This fundamental difficulty, deeply seated in SAEC, is commonly referred to as
non-uniqueness problem, which has earned recognition as an intrinsic burden not
existing in the monaural echo cancellation. In 1998, Benesty, Morgan and Sondhi
further clarified this problem, and showed that the normal equation is often ill-

conditioned or has infinitely-many solutions [13].

Let us simply explain the non-uniqueness problem mathematically. The input

sequence (ug))keN, i = 1,2, can be written as

ul? = s, 03, (5.2.1)

where * denotes convolution. Considering the case of N = L., for simplicity,

} }UL(I) )
h = (2) = h + «

0
0(2) ] , 0 €R, (5.2.2)

paple

satisfies

Sl B = 3w« hy, (5.2.3)

i=1,2 i=1,2

V)

which implies, under noiseless environments, that e;(h) = 0. This is the basic
mechanism of the non-uniqueness problem [13] (Precise analysis is possible by
using z-transform of (5.2.3) with (5.2.1); see e.g., [65]). From (5.2.2), we see that
filter coefficients that cancel the echo depend on the transmission paths 6y and
(2. This implies that, without well-approximating h”, echo will relapse by change
of 61y and 6,y due to talker’s alternation etc (see also [138, Appendix A]). Hence,
it is strongly desired to keep hy, close to h* before the transmission paths change

drastically.
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1—Ck

Figure 5.2.4: A preprocessing unit called input sliding. The factor ¢ slides be-
tween 0 and 1 periodically, and thus, ﬁ,(el) = cku,gl) +(1- clyc)'uj,(el_)1 is a periodically

delayed version of u,(el).

5.2.3 Preprocessing Techniques

As stated in Sec. 5.2.2, the difficulty of non-uniqueness has been known to be
inherent in the SAEC problem. To alleviate this difficulty, several excellent pre-
processing techniques* were proposed; half-wave rectifier [13] (see [46] for its im-
proved version), comb filtering [12,108], additive noise [47,49] and time-varying
filtering [2,66, 112] (see [60] for its generalized version of [66]); another nonlinear
preprocessing technique is also proposed in [98]. Indeed, efficacy of several non-
linear preprocessing techniques has been quantified with mutual coherence of the
stereo inputs [80].

Figure 5.2.4 illustrates a simple example of the preprocessing unit generating
two states of inputs (see also Fig. 5.1.1). In [66,112], it is reported that periodic
one-sample-delays, in one side of stereo inputs (i.e., ug) in Fig. 5.1.1), realize
accurate echo path identification without audible degradation in speech. Since
u,(el) is generated by convolution of the talker’s speech s, with the transmission
path 6(;), the periodic delays virtually give one-sample-shift to 6(;). In other
words, the preprocessing technique introduces a slightly modified state of input
and alternates two® (modified and non-modified) states of inputs periodically,
leading to alternation of two states of transmission path, say 6y and 5(1). As a
result, since the solution set depends on transmission paths as mentioned above,

two slightly different solution sets, V(6(1)) and V(E(l)) (corresponding to V and V

4Some non-preprocessing techniques were also proposed with an advantage of no degradation
in input signals [59,68,70,96], however, their tracking speed of echo paths is somewhat inferior
to some preprocessing techniques.

5 Although the number of states could be generalized to more than two by generating more
than one modified states, we adopt two states for simplicity.
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in Fig. 5.1.2, respectively), are generated alternately.

5.3 Proposed Class of Stereo Acoustic Echo

Cancellation Schemes

In this section, we present a class of set-theoretic SAEC schemes based on the
POWER weighting technique. The proposed approach utilizes parallel projection
onto certain closed convex sets. First, we provide a brief introduction of set-
theoretic adaptive filtering and define the closed convex sets. Then, we show the
relationship between the proposed approach and the APA-based method. Finally,

we present the proposed schemes in a simple manner.

5.3.1 Set-Theoretic Adaptive Filtering and Convex Set
Design

We briefly introduce the basic idea of the set-theoretic [24,25,124,126,129] / set-
membership [51,52] approaches in the adaptive filtering. Let us first start with
the set-theoretic approach® in the static conver feasibility problem [4,22,24,25];
find a point in the nonempty intersection of fized closed convex sets S;, 7 € Z C N.
Each set S; is designed based on available information, such as noise statistics
and observed data, so that S; contains the estimandum h* with high probability.
Suppose that h* € S;, Vi € Z. Then, it is a natural strategy to find a point in
N;ez Si as an estimate of A*. Due to the nonlinear nature of the problem, certain
successive numerical approximations by utilizing the information on each set S;
infinitely-many times are, in general, necessary.

In [129], the adaptive filtering problem is translated into a time-varying version
of the convex feasibility problem, where multiple closed convex sets Si(k), 1 €1y C
N, are defined by multiple observable data, hence being time-varying (A unified
framework for this approach is found in [124,126]). Namely, the collection of

convex sets (Si(k))iezk used at time £ is varying based on data incoming from one
minute to the next (Also h* is possibly time-varying). Especially in rapidly time-

varying environments, it should be reasonable to use a limited number of sets

6The difference is clearly stated in [24] between the set-theoretic approach and the conven-
tional approach, i.e., optimize an objective function with or without constraints.
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(517)

)

iez, that are defined with recently obtained data. This strategy agrees with
saving the computational complexity, another requirement in adaptive filtering.

This is the basic idea of the set-theoretic adaptive filtering approach.

The adaptive-PSP algorithm [129] has been proposed as an efficient set-
theoretic adaptive filtering technique. The algorithm adopts subgradient projec-
tions as approximations of the exact projections onto the convex sets for saving
the computation costs. The multiple (subgradient) projections are computed in
parallel, hence the algorithm can save, by engaging parallel processors, the time
consumption for each update. Finally, the update direction of filter is determined

by taking a weighted average of the projections.

The first step is to define closed convex sets that contain h* with high proba-
bility. A possible choice is as follows [129]:

Cu(p):={heH(=R"): g.(h):=|le,(h)|]” = p <0},
Vie I, CN, Vk € N, (5.3.1)

where p > 0 and Z is the control sequence at time k (see Sec. 5.3.3). Assignment
of an appropriate value to p raises the membership probability Prob{h* € C,(p)}
and, at the same time, keeps C,(p) sufficiently small (see Sec. 5.3.2 for detailed
discussion). Since the projection onto C,(p) requires, in general, very high compu-
tational complexity, we instead employ the projection onto the closed half-space”
[129] H, (ht) := {x € H : (x — hy, Vg, (h)) + g.(h) < 0} D C,(p), which has

the following simple closed-form expression:

—g.(hi) + (he — h)"Vg,(hs)
h + 5
Pp—ny(R) = IVg.(he)
h, otherwise.

Vg.(h), ifh & H (hy),

Here, Vg,(hy) = 2U,e,(hy) and Py- @, (h) = Pe,p)(h); see [129, Fig. 3]. It
should be remarked that Py 4, ,(h) requires O(NV) complexity. Choosing specially

"Tighter closed half-spaces are also presented in [87] [see Example 6.3.2-(b)], which can also
be used with the proposed schemes.
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h = h;, we have

gL(hk) . _
hy — I G0 (hy), if by & H (hy),
Py o) — 4 Va0 e 2 L ()

hy, otherwise.

(5.3.2)

5.3.2 Relationship to APA-Based Method and Robustness

Issue against Noise

The popular APA [89] can be viewed in the time-varying set-theoretic framework
[129] with the linear varieties Vj := argminpcy |lex(h)|” (Vk € N). The APA
generates a sequence of filtering vectors (hy)reny C H(:=R*Y) by (see [129])

hk:—i—l = h, + A\ (PVk (hk) — hk) , Vk € N, (533)

where )\, € (0,2). In particular, for r = 1, (5.3.3) is nothing but the Normalized
Least Mean Square (NLMS) algorithm [84], where r is the dimension of affine
projection (see Sec. 5.2.1 for the definitions of U, € R*¥*" and d;, € R"). A
simple comparison of Vi, with C¢(p) in (5.3.1) implies Vi, = Cy(0x), where & :=
minpey ||ex(h)||*. Note here that we most likely have dj, ~ 0, since we often have
2N > r due to long impulse responses of acoustic paths.

The remaining of this section is devoted to the robustness issue against noise
by highlighting the membership h* € Cj(p), which ensures the monotone ap-
proximation property (for stability); i.e., ||hry 1 — h*|| < ||hr — h*||. Noting that
h* € Ci(p) & |lex(h)|* = ||m]|* < p, we see that p governs the reliability on
the membership h* € Cy(p) by fop fr(&)dE, where f,.(€) is the probability den-
sity function (pdf) of the random variable &€ = ||ng||* (f,(€) is given in [129,
Eq. (9)]). Under the assumption that the noise process is a zero mean i.i.d. Gaus-
sian random variables N(0,0?), the random variable £ follows a x? distribution
(of order 1), where 02 is the variance of noise. The pdf f,(€) is strictly monotone
decreasing over £ > 0 for r = 1,2, whereas for r > 3, it has its unique peak at
£ = (r—2)0? and f,(0) = limgo f(§) = 0. Recall that we most likely have
dr = 0. The above facts imply that, for » > 3, Prob{h" € C¢(dx)(= Vi)} is ex-
pected to be small, which causes serious sensitivity of the APA to noise for r > 3
(see Sec. 5.4). For r = 1,2, on the other hand, Prob{h* € C\ ()} is expected
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to be relatively large, which suggests robustness of the APA (r = 1,2) against
noise (This agrees with the H* optimality [54] of the NLMS, a special case of the
APA for r = 1). By designing appropriate p based on statistics of noise process
(see [129, Example 1]), the proposed schemes can fairly raise Prob{h* € Ci(p)};
NOTE: Prob{h* € H, (hy)} > Prob{h" € Ci(p)} because H, (hj) D Ci(p). This
brings about the noise robustness of POWER I/, which is presented below.

5.3.3 Novel POWER-Based Stereo Echo Canceler

Given g € N*, define the control sequence consisting of the ¢ latest time indices as
I,EC) ={k,k—1,...,k—q+ 1} C N Let Q¢ € N* denote the cycle period of
preprocessing [66, 112], i.e., every Qcy./2 iterations, the state of inputs is switched.
Then, k — Qcye/2 (Vk > Qcyc/2) always belongs to the state opposite to k. To

utilize data from both states of inputs, we use I,EC) U I,gp) as in [138], where

(p) L Q)a 0 S k S Qcyc/2a
T gy B> Qeye/2

Note that the definitions of I,EC) and I,Ep) can be generalized to any index sets
consisting of arbitrary indices chosen from the current and previous states, re-
spectively (see [136]). For simplicity, however, we focus on the above specific
definition in the following.

Although given already in the previous chapter, the most important definition
is now restated; three points expression of projection onto the intersection of two

closed halfspaces. For convenience, let us define, Va,b € H,
I (a,b) ={yeH:{(a—by—b) <0} CH, (5.3.4)

where I17(a, b) is a closed half-space if @ # b. Then, for a given ordered triplet
(s,a,b) € H? s.t. [I7(s,a) NI (s,b) # 0, we define

P(s,a,b) := Pu-(s a)nmi-(s,0)(S),

namely P(s, a, b) denotes the projection of s onto I (s,a) NI~ (s, b) in H.
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We propose a new class of SAEC schemes that utilize P(s, a, b) (see Proposi-
tion 4.3.3) to realize better weights in the method proposed in [138]. Two schemes
in the proposed class are presented below, where two families of closed half-spaces,
{HL_(hk)}LeI,E,C) and {H;(hk)}bezlgp), are used in different ways.

A. POWER Type I

A scheme that exploits the POWER technique in a combinatorial manner is pre-
sented below [see Fig. 5.3.5-(a)]. Define I,gl) ={(k—i+1,k—Qec/2—i+1):
i=1,2,-+-,q} C {(t1,00) : 11 € I,gc), Ly € I,gp)}. Also define inductively the
control sequences used in each stage as I,(cm) C {(t1,t2) : 11,19 € I,(cm_l), 1 # 1o},
Vm € {2,3,---, M}, Vk € N, satisfying 1 = || < |T™ V| < ... < || <

|I,£1)| = ¢. The scheme is given as follows.

Scheme 5.3.1 (POWER Type I). Suppose that a sequence of closed convex sets
(Ck(p))gen C H is defined as in (5.3.1). Let hy € H be an arbitrarily chosen
initial vector. Then, define a sequence of filtering vectors (hy),oy C H through

multiple stages.

& 0th Stage: Projection onto 2q Half-Spaces

hi) =Py (he), VEEN, Ve I UL, (5.3.5)

where Py, (hi) is computed by (5.3.2).
& 1st ~ Mth Stage: Find Good Direction

form:=1 to M do

N L ifnly = —\ /& £,
e P (hk, h,(ﬂl_l), hgﬁ;l)) ,  otherwise,

VEEN, Vi=(u,1) €™, (5.3.6)

2
where 771(57) = <h,(;;’zl b_ hk,h,g?zz b_ hk>, f,g’;‘) = Hh,(e’h’z1 b_ th and C,g’:) =

k2

2
Rimb _ th .

end;



CHAPTER 5. EFFICIENT FAST STEREO ACOUSTIC ECHO
88 CANCELLATION BASED ON POWER

& Final Stage: Update to Good Direction

hk+1 = h;, + )\k(h hk) Vk € N, (537)

where A\ € [0,2] is the step size.

Through the multiple stages, the direction of update is improved thanks to the
operator P(-,-,-) (see Remark 4.3.12 for details).

B. POWER Type I

A simple and efficient scheme that exploits the POWER. technique just once is
given as follows [see Fig. 5.3.5-(b)].

Scheme 5.3.2 (POWER Type II). Suppose that a sequence of closed convex sets
(Ci(p)),ex C H is defined as in (5.3.1), where I := J, o ( © UI( )). Let hy € H
be an arbitrarily chosen initial vector. Then, define a sequence of filtering vectors

(hg)ken C H through the following two stages.

& 1st Stage: Uniformly Averaged Directions

he + ME | ST w® Py (i) —he |, if T 0,

LEI}Eg)

h,(cg) =

hy, otherwise ,
Vk e N, Vg € {c,p}, (5.3.8)

where w® == 1/|T®| = 1/q (Vo € I.¥ ) and

2
ZL 7(®) U)/gg) HPH;(hG)(hk) — by
€Ty ” b s ifhy ¢ mLeI,(f) H (hy),
HZLez}f) wy P (ny (hi) =

1, otherwise.

& 2nd Stage: Reasonably Averaged Direction by POWER

hy, if e = —VE&CGr # 0,

i1 = © po)y _ :
hi + \e{P(hy, b, b)) — hi}, otherwise,
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Vk € N, where A\, € [0,2] is the step size, ny = <h§:) - hk,hép) — hy), & =
IR = il and G := A — hu .

In the 1st stage, for saving the computational complexity, the uniform averages
h,(:) and h,gp) are computed for two groups corresponding to I,EC) and I,gp). In the
2nd stage, the POWER technique is exploited to find a good direction of update
based on three kinds of information; hy, h\” and AP (see Sec. 4.3 for details).

Remark 5.3.3 (On Schemes 5.3.1 and 5.3.2).

(a) Simple system models to implement the proposed schemes with ¢ = 4 are
shown in Fig. 5.3.5. The structure of POWER I is named binary-tree-like
construction with its number of stages M = [log, q| + 1; in this case, M = 3
(see [135,137]). We see that POWER II is computationally more efficient
than POWER I, since it utilizes the POWER technique just once. The pro-
jections {PHf(hk)(h’“)}LeI,EC)UI,EP)’ Vk € N, in (5.3.5) and (5.3.8) are, respec-
tively, computed simultaneously with 2q concurrent processors. This implies
that the proposed schemes are inherently suitable for implementation with
concurrent processors. With such processors, the number of multiplications
imposed on each processor is (3M +2r+1)N+21M+r (M = [log, q|+1) for
POWER I and (2r+6)N+r for POWER II for ¢ > 2; for q = 1, it is reduced
to (2r + 4)N +r for POWER I/I . In other words, the complezity is kept

O(N), which is a desired property especially for real-time implementation.

(b) Discussions about convergence of the adaptive-PSP algorithm are found in
the Adaptive Projected Subgradient Method [124,126], a more general frame-
work. A geometric interpretation illustrated in Fig. 5.3.6 will be rather help-
ful from a standpoint of application. For simplicity, we set ¢ = 2 and
Ax = 1. In the figure, the estimandum h* (see Sec. 5.2.1) is assumed to
belong to the dotted area; i.e., h* € ﬂLEIIgC)UIlgp) H (hy). This assumption
holds if Cy(p) is defined appropriately (For details, see [129]). We see that
the schemes realize good directions of update. For visual clarity, the half-
spaces H_(hk’hls:l,()k,k—Qcycﬂ)) and H_(hk’h’lgl,zk—l,k—Qcycﬂ—l)) are omitted. It
is not hard to see that hy,1 = P(hk,h,gl’) h)

(k’k_QCYC/Q), k’(k_lyk_Qcyc/Q—l)) =
hg’gk’kacyc/Z) in this simple example.
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Current State  Oth Stage 1st Stage 2nd Stage Fina Stage

(0)
Previous State (U1, di) I_Ihk’l hl(cl)15
-, L ,(1,5)
(Us,ds) — hk’5 ,—»H
LT
U, d (0)
( 2, 2) th72L h(l) ::._h5922(15)(37))
U.. d h(()) k,(2,6) »\{159),(9,
( 65 6) D k.6 ,—»._
hj1
(Us, ds) — hgg
L.
(U?)d?') hL]SO;'S? ,—‘. ¥ hl(clgg’? h(2
Uod) — _pp g 00
L]
Us.d R0 L] )
( 8 8) D k,8 ,_'. k,(4,8)
(a)
Current State 1st Stage 2nd Stage
(Uladl)
—
LI
(U27d2)
L
Us.d
( 3 3) —/ l—'l:'—
L h(c)
(U47d4) k
—
— h
Previous State ::-_f“
(U57d5)
[
(Us, ds) P
[] L.
U-. d ..
(Urdr) l_’ ] Projection
LI
(Us ds) [[] Uniform Average
LI

il POWER
(b)
Figure 5.3.5: Simple system models with eight parallel processors (¢ = 4) to
implement (a) POWER I and (b) POWER II. For notational simplicity, define

the current control sequence I,gc) = {1,2,3,4} and the previous control sequence

I,Ep) = {5,6,7,8}. This type of design of control sequences for POWER I is
called binary-tree-like construction. It is seen that POWER 1I is more efficient in
computation than POWER 1.
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I_I];_Qc)'C/2 (hk)
I~ (hk’ h’l(cp))
Hk_fQCyc/Q—l (hk)

(1)
hk:(kak_QCyC/Q) hg+1
hy)
V(6,)

Figure 5.3.6: A geometric interpretation of the proposed schemes. POWER I:
h}gﬂ, POWER II: hgﬂ. The control sequences are defined as I,(CC) = {k,k—1} and

I,Ep) = {k — Qcyc/2,k — Qcyc/2 — 1}. The dotted area shows ﬂLEIIEC)UIIgp) H (hg).
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Figure 5.4.7: The input signals (u,&”) and (u,@) . The signals are generated
keN kEN

from a speech signal, sampled at 8 kHz, of an English-native male.

(c) The proposed schemes realize strategic weight designs for the method in [138]
in the sense that the schemes give optimal weights, based on a certain maz-

min criterion, in each stage (see Sec. 4.3.3).

5.4 Numerical Examples

This section presents numerical examples of the proposed schemes, the UW-PSP,
APA [58,89], NLMS [84] and fast RLS (FRLS) [40, 97] algorithms. All the methods
are performed with a common preprocessing technique in [66, 112] that periodically
delays input signals in the 1st channel with the cycle of preprocessing @)y = 2000.
The tests are conducted, for estimating h* € H = R*(N = L., = 1000),
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under the noise situation of SNR := 10log,,(F{z7}/E{ni}) = 25 dB, where
2, = (ug, h*) and E{-} denote pure echo (i.e., echo without noise) and ezpectation,
respectively. We utilize a recorded speech signal of an English native male® shown
in Fig. 5.4.7, for (sg)gen, which was sampled at 8 kHz. For numerical stability
against the poorly excited inputs observed in Fig. 5.4.7, all the algorithms are
regularized. The APA is regularized by following the way in [43] with exactly
the same parameter as in [129]. The NLMS is regularized by following the way
in [56, Eq. (9.144)] with the regularization parameter § = 1.0 x 107" for better
performance. Because the original RLS algorithm is computationally intensive for

acoustic echo cancellation applications [11, p.77], a simplified implementation of

the regularized RLS [40] is employed with & = 2002 and ¢;, = 1 (Vk € N), where

2

Oy

is the variance of (uy)ren. For the proposed schemes and the UW-PSP, the

projection in (5.3.2) is regularized as

hy, — gb(hk)
PO )= Ve

H

ng(hk), if hk € H;(hk),

hy, otherwise.

where ¢ is set to 1.0 x 1076,

In addition to the regularization for numerical stability against poor excitation,
while the signal power is less than a common threshold, we stop the update for all
algorithms throughout the simulations (This is the reason of the observable flat

intervals in the figures).

To measure the achievement level for echo path identification as well as echo

cancellation, the following criteria are adopted:

[h* — By

System Mismatch (k) := 10log;, EE

,Vk € N,

Sh 22
ERLE(k) = 10log,y —p— ==L —— Vk € N.
Yoo (zi — (ug, hy))

Simulations are conducted under several conditions.

8The speech sample is provided by “Special Research Project of the Typological Investigation
into Languages & Cultures of the East & West (LACE)” in University of Tsukuba; the website
is found in http://www.modern.tsukuba.ac.jp/ ~lace/index.html.
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5.4.1 Proposed Schemes versus UW-PSP with Different g

First, we examine the performance of the proposed schemes and the UW-PSP
with (|I,(cc)| = |I,Ep)| =)q = 4,16 in Fig. 5.4.8. For a comparison, the curve of
NLMS with the step size Ay, = 0.2 is drawn, which is a special case of POWER
Iforg=1,r=1p=0 A\ =04, 0 =79 = {k}, " = {(k, )} (M = 1)
and I,Ep) = (). For the proposed schemes, we set \, = 0.4 (Vk € N), » = 1 and
p = max{(r — 2)o? 0} = 0; see Sec. 5.3.2 and [129]. The control sequences for
POWER T are designed in the same manner as shown in Fig. 5.3.5.

For POWER 1I and the UW-PSP, the curves of ¢ = 4 are omitted for visual
clarity, since the difference between ¢ = 4 and ¢ = 16 is not significant. Referring
to Fig. 5.4.8, we see that the increase of ¢ for POWER I significantly improves
the convergence speed without serious degradation in steady-state performance in
both criteria. We also see that POWER I for ¢ = 4 exhibits faster convergence
than the UW-PSP for ¢ = 16. The above observation suggests that weight design

s the key to attain better performance by increasing q.

5.4.2 APA-Based Method with Different r

Next, we examine the performance of the APA for r = 2,4,8,16 in Fig. 5.4.9,
where r is the dimension of affine projection (see Sec. 5.3.2). The APA based
method using data from one state of inputs at each iteration is referred to as
“APA-T". The step size for r = 2 is set to Ay = 0.2 for better performance. For
r =4,8,16, two step sizes are employed; one is fixed to Ay, = 0.2 (the same step
size as r = 2), for all r, and the other is individually tuned, for each r, so that the
steady-state performance in system mismatch is almost the same as r = 2 with
A = 0.2.

Referring to Fig. 5.4.9, the increase of r for the APA-I raises the initial conver-
gence speed at the expense of serious degradation in the steady-state performance
in system mismatch, which causes gain loss in ERLE especially for r = 8,16. For
the tuned step size, on the other hand, no distinct difference is observed among all
r in system mismatch, since, for large r, the small step size for good steady-state
performance decreases the initial convergence speed. Comparing Fig. 5.4.9 with
Fig. 5.4.8, it is seen that POWER I successfully alleviates the trade-off problem

between convergence speed and steady-state performance.
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Figure 5.4.8: Proposed Schemes versus UW-PSP for r = 1 and Ay = 0.4 under
SNR = 25 dB. For a comparison, the performance of NLMS (a special case of the

proposed method for ¢ = 1) is shown for A, = 0.2.
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Figure 5.4.9: APA-I for r = 2,4,8,16 under SNR = 25 dB. For r = 2, we set
A = 0.2. For r = 4,8,16, we use the same step size A\, = 0.2 and individually
tuned one; A\, = 0.1 for r = 4, A\, = 0.04 for r = 8 and A\, = 0.022 for r = 16.
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It should be remarked that these results do not contradict the results in other
publications as mentioned below. Under high SNR situations, it is reported that
the increase of r in the APA raises the speed of convergence, especially for highly
colored excited input signals, without severely deteriorating the steady-state per-
formance (see e.g., [15,93,95,113]). Under low SNR situations, on the other hand,
it is theoretically verified that the increase of r in the APA decreases the member-
ship probability h* € Vj, (especially for r > 3, Prob{h* € V}} = 0) [129, Sec. III],

which causes serious noise sensitivity of the APA for r > 3 (see also Sec. 5.3.2).

5.4.3 Proposed Schemes versus UW-PSP, APA, NLMS
and FRLS with Fixed and Time-Varying Echo Paths

The proposed schemes are now compared with the UW-PSP, APA-I, NLMS and
FRLS algorithms in Figs. 5.4.10 and 5.4.11. For the proposed schemes and the
UW-PSP, the parameters are exactly the same as in Fig. 5.4.8 except that ¢ = 8.
For the NLMS, the step size is set to 0.2 to attain better steady-state performance.
For the APA-I, we set r = 2 and Ay = 0.15 so that the initial convergence speed is
the same as the UW-PSP. For the FRLS, the forgetting factor is set toy = 1— 18LN
for the best performance among our experiments. We remark that the FRLS
algorithm exhibits severe sensitivity against the choice of the forgetting factor or

——, the
15N’
speed of convergence was a little faster but the filter diverged around the iteration

the regularization parameter £7; e.g., once we tried to employ v = 1 —

number 500000. In this simulation, although the steady-state performance is not
the same as the proposed schemes, the parameters are tuned carefully.

Figure 5.4.10 depicts the results under the condition of fixed echo paths. We
observe that the proposed schemes attain much faster convergence as well as bet-
ter steady-state than the NLMS, APA-I and FRLS algorithms. The time for
POWER I to achieve the system mismatch level of —20 dB is approximately 25
sec. The time for each algorithms is summarized in Table 5.4.1. POWER 1 is ap-
proximately 45 sec., 25 sec. and 3 sec. faster than the NLMS, the APA-I and the
FRLS, respectively. Figure 5.4.11 depicts the results under the condition where
the echo paths are changed at the iteration number 1.6 x 10°. We see that the
proposed schemes exhibit excellent tracking behavior against echo path variation.
In Figs. 5.4.10 and 5.4.11, the FRLS exhibits poor ERLE performance due to the
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Table 5.4.1: Time needed to achieve the system mismatch level of —20 dB.
method |[POWER I|POWER II|UW-PSP |FRLS|APA-T |INLMS
sec. 25 31 43 28 50 75

observable instability in system mismatch at the beginning of adaptation. For
fairness, we also draw the curves of the FRLS in a different ERLE criterion in
which the summations are taken (not from ¢ =1 but) from the moment when its
system mismatch becomes less than 0 dB (This new ERLE criterion is referred to
as “fair ERLE”).

It is reported that the RLS algorithm exhibits, besides its high computational
complexity, an instability issue especially for (nonstationary) speech signals, and
thus has been discouraged to be used in acoustic echo cancellation [11, p.77]. Also
the FRLS algorithms inherit the instability issue, as pointed out in a considerable
amount of literature; e.g., [42, p.40], [14,50,82,105]. Moreover, the observable
slow initial-convergence of the FRLS stems from the same reason as its tracking
inferiority, under nonstationary environments, to the LMS-type algorithms, as
remarked, e.g., in [54, 57, 71].

5.4.4 Proposed Schemes versus APA with Simultaneous

Use of Data from Two States

Finally, POWER T is compared, in Fig. 5.4.12, with the remaining possibil-
ity to resolve the zig-zag loss (see Sec. 5.1); i.e., the APA with simultaneous
use of data from two states of inputs. Namely, Vk > Qcyc/2 + /2, €x(h) =
ﬁZh — dy, is used to define V; (see Sec. 5.3.2) instead of ej(h), where Uy, :=
[k - - Up—y 241Uk~ Qeye/2 * - Wk—Qeye/2—r/241] € R2V*T and :ik = ﬁgh* +n, €R
with 7 i= [fg, -+ Mpr /21, Mh—Quye/2s > Mh—Quye/2—r/241) - This new APA
method is referred to as “APA-II”. For the proposed scheme, the parameters are
the same as in Fig. 5.4.8 (or in Fig. 5.4.10) for ¢ = 4,8. For the APA-II, for fair-
ness, r = 8, 16 are employed with the tuned step size A\, = 0.04,0.022, respectively.
For a comparison, the curves of APA-T and I with » = 2 and Ay = 0.2 are also
drawn.

In Fig. 5.4.12, we observe that the proposed scheme achieves faster initial

convergence and better steady-state performance than the APA-II in both criteria.
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Figure 5.4.10: Proposed Schemes versus UW-PSP, NLMS, APA-I and FRLS
under SNR = 25 dB. For the NLMS, Ay = 0.2. For the APA-I, » = 2 and
1
Ar = 0.15. For the FRLS, v = 1 — ——. For the proposed schemes and the

18N
UW-PSP, r =1, A\, = 0.4 and ¢ = 8.
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Proposed Schemes versus UW-PSP, NLMS, APA-I and FRLS with
the echo paths changed at the iteration number 1.6x10°. The other conditions
are the same as in Fig. 5.4.10.
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Figure 5.4.12: Proposed Schemes (¢ = 4,8) versus APA-Il (r = 2,8,16) under
SNR = 25 dB. For the proposed, we employ the same parameters as in Fig. 5.4.8.
For APA-II, A\, = 0.2,0.04,0.022 for r = 2,8, 16, respectively. For APA-I, r = 2
and )\, = 0.2.
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Moreover, for the APA-II, the increase of r improves the initial convergence speed
at the expense of unignorable deterioration in ERLE. On the other hand, for the
proposed scheme, the increase of ¢ improves the performance in both criteria, as

also shown in Fig. 5.4.8.

5.5 Conclusion

This chapter has presented a class of efficient fast stereophonic acoustic echo can-
celing schemes based on the POWER weighting technique. The proposed schemes
successfully accelerate the convergence with keeping linear complexity and good
steady-state performance. Numerical examples have verified the efficacy of the
proposed schemes. The results of the extensive simulations suggest the POWER
technique is significantly effective especially for the challenging stereophonic echo

canceling problem.



Chapter 6

Adaptive Parallel
Quadratic-Metric Projection

Algorithms

Summary

The goal of this chapter is to show that an appropriate design of metric in the
Adaptive Projected Subgradient Method (APSM) [Yamada, 2003] leads to signif-
icant improvements in adaptive filtering problems. The key is to incorporate a
priori (or a posteriori) knowledge on characteristics of an estimandum, a system
to be estimated, into the metric design. We propose a family of efficient adaptive
filtering algorithms based on parallel use of quadratic-metric projections, i.e., the
best approximation in a closed convex set in the sense of a quadratic norm. We
first present two adaptive algorithms in which the metric is constant in time; the
algorithms are named Adaptive Parallel Quadratic-metric Projection (APQP) al-
gorithm anD Adaptive Parallel Min-max Quadratic-metric Projection (APMQP)
algorithm. APQP is based on the parallel projection, with a quadratic-metric,
onto data-dependent closed convex sets containing the estimandum with high re-
liability. APMQP selectively exploits critical ones among the closed convex sets
by a simple min-max criterion. Those algorithms are naturally derived by APSM,
thus are endowed with remarkable properties including monotonicity, asymptotic-

optimality, and strong convergence.
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We then present a more general form of APQP where the metric itself changes
in time, thus it is named Adaptive Parallel Variable-metric Projection (APVP)
algorithm. The algorithm enjoys a valuable monotone property at each itera-
tion. By employing an efficient metric, the overall computational complexity of
the proposed algorithms is kept linear w.r.t the filter length. Numerical examples
demonstrate the advantages of the proposed algorithms in the acoustic echo can-
cellation problem over the conventional algorithms including the Euclidean-metric
version of APQP.

6.1 Introduction

Metric projection has been proven to be an effective tool in the robust adaptive
signal processing [54,56,97,129]. It is employed in a variety of algorithms such as
the Normalized Least Mean Square (NLMS) [1,84], Affine Projection Algorithm
(APA) [58,81,89,93,103], set-membership NLMS [51], set-membership APA [31,
121], constrained NLMS/APA [27,28,67] (in the embedded sense [124,126]),
adaptive Parallel Subgradient Projection (adaptive-PSP) [129,135], embedded-
constraint parallel projection [132] algorithms. Although there is great freedom,
those algorithms mostly employ the Euclidean metric. This chapter presents effi-
cient quadratic-metric-projection based algorithms and indicates that a reasonable
choice of metric for each application will lead to drastic improvements of perfor-
mance.

As a unified guiding principle of the metric-projection-based adaptive algo-
rithms, Adaptive Projected Subgradient Method (APSM) has been proposed [124,
126] (see Chapter 2), which minimizes asymptotically a sequence of nonnegative
convex objective functions over a closed convex subset of a real Hilbert space!.
APSM is constructed by combining a metric projection and a relaxed subgradient
projection w.r.t. time-varying objective function. The APSM has been proven to
be a promising method to derive excellent algorithms in applications to stereo-
phonic acoustic echo cancellation [134,138] (see Chapter 5) and blind multiple
access interference suppression in DS/CDMA systems [20, 132] (see Chapter 3).

L Although all the proofs are given for real case in [124,126], this is not a restriction. APSM
can also be applied to complex case by defining a bijective mapping between an N-dimensional
complex vector space CN and R*V (see, e.g., [21,140]).
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The metric projection operator employed in APSM is extended to a more gen-
eral nonexpansive mapping called strongly attracting nonexpansive [99,100]. By
this extension, we can handle multiple convex constraint sets in asymptotic sense
without using the projection onto their intersection. This extended version has
been successfully applied to a robust adaptive beamforming problem [101,102].
For clarity, let us now give some simple examples of reproductions of metric-
projection-based algorithms by APSM.

The classical NLMS algorithm is reproduced by defining the objective function
at each iteration as the distance to a hyperplane containing all possible points that
make instantaneous residual error for the latest datum equal to zero. Moreover,
the APA algorithm is reproduced by defining the objective function as the distance
to a linear variety containing all possible points that simultaneously make instan-
taneous residual errors for a certain number (say r) of data equal to zero. While
the linear variety used in APA surely contains the estimandum in noiseless cases,
it has been analyzed, with the standard noise model of i.i.d. white Gaussian, that
the probability that the linear variety for » > 3 contains the estimandum in noisy
cases is almost zero and it causes the noise sensitivity of APA [129]. In contrast,
the probability that the hyperplane used in NLMS contains the estimandum is
relatively high [129], which agrees with the H*-optimality of NLMS [54].

Motivated by this analysis, adaptive-PSP, a more efficient adaptive algorithm,
has been established [129], where multiple closed convex sets have been intro-
duced instead of a single linear variety (or hyperplane) at each iteration; the closed
convex sets are called stochastic property sets and designed so as to contain the
estimandum with high probability even in noisy cases. The adaptive-PSP algo-
rithm is based on a convex combination (or a weighted average) of the projections
onto multiple closed half-spaces, which are outer approximations of the stochastic
property sets. The adaptive-PSP algorithm is derived by APSM with the objec-
tive function of a weighted sum of the distances to the half-spaces. Usually the
algorithms having been derived by APSM employ the Euclidean metric (or norm)
defined by the standard inner product: (a,b) = a’b for any a,b € RV (N € N*).
One may think that the use of this simple metric is natural because the norm
equivalency for finite dimensional cases suggests that the convergence property of
a ‘given’ sequence of vectors is independent of the choice of norm. However, APSM

with a different metric (norm) generates a different vector sequence. Therefore,
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the choice of metric in APSM governs the convergence property including con-
vergence speed and steady-state performance, which is essential in the adaptive
signal processing. The goal of this chapter is to show that an appropriate design of
metric in APSM leads to significant improvements in adaptive filtering problems.

In the first part of this chapter (Sec. 6.2), we propose a family of very flexi-
ble adaptive algorithms based on quadratic-metric. We firstly present two adap-
tive algorithms in which the metric is constant in time. The first is based on
the parallel projection onto data-dependent closed convex sets, thus it is named
Adaptive Parallel Quadratic-metric Projection (APQP) algorithm (see Algorithm
6.2.1). APQP includes as its simplest case the Erponentially weighted Stepsize
Projection (ESP) algorithm [77,78], developed originally for effective Acoustic
Echo Cancellation (AEC) (see Proposition 6.2.4). The second selectively utilizes
critical ones among those convex sets by a simple min-max criterion, thus it is
named Adaptive Parallel Min-maz Quadratic-metric Projection (APMQP) algo-
rithm (see Algorithm 6.2.5). These two algorithms are naturally derived by em-
ploying quadratic-norms in the APSM, hence those algorithms are equipped with a
strongly attracting nonexpansive mapping and are endowed with remarkable prop-
erties of APSM; e.g., monotonicity, asymptotic optimality, and strong convergence
(see Fact 2.0.3). Although the ‘constancy’ in the metric design is crucial to ensure
the above properties, we secondly present a more general form of APQP where the
metric itself changes in time. In other words, the algorithm is based on variable-
metric, thus it is named Adaptive Parallel Variable-metric Projection (APVP)
algorithm, in which the strongly attracting nonexpansive mapping is also variable
in time (see Algorithm 6.2.10). APVP includes as its special cases the Proportion-
ate NLMS/APA (PNLMS/PAPA) algorithms [9, 10,29, 33,41, 48,64, 86,120] (see
Proposition 6.2.12), which have been proposed originally for a sparse estimandum.
The proposed algorithms (APQP/APMQP/APVP) have the valuable monotone
property (see Propositions 6.2.9 and 6.2.13). By employing an efficient metric,
the overall computational complexity of the proposed algorithms is kept linear
w.r.t. the filter length (see Remark 6.2.14). It is clarified that the APA, ESP, and
PAPA algorithms are based on iterative relaxed-projections onto the same linear
varieties with different metrics, respectively.

In the second part of this chapter (Sec. 6.3), we investigate the effects of the
proposed algorithms in a practical application, the AEC problem. We present
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an efficient AEC algorithm named Adaptive Quadratic-metric PSP (AQ-PSP). In
the design of the metric employed in the AQ-PSP algorithm, we can use the well-
known fact that the room impulse responses decay exponentially on average and
the exponential factor is modeled by means of sampling frequency and the time
interval in which the reverberant sound energy drops down by 60 dB [69] (see
Sec. 6.4.2). By employing a simple metric, the additional computational com-
plexity compared with the Euclidean metric is negligible (see Remark 6.2.14). In
Sec. 6.4, simulation tests are performed under severely noisy environments with
recorded speech signal for the proposed algorithms [AQ-PSP and its variable-
metric version named Adaptive Variable-metric PSP (AV-PSP)] compared with
the ESP and PAPA algorithms. Numerical examples demonstrate the advantages
of the proposed algorithms over the conventional algorithms and verify the signif-
icance of the choice of metric. Two simple metrics are compared with each other
for different exponential factors. Respective suitable situations for AQ-PSP and
AV-PSP are also discussed.

A preliminary version is to be presented at the EUSIPCO2006 conference [141].

6.2 Adaptive Parallel Quadratic-Metric Projec-
tion Algorithms

Throughout the chapter, to specify an inner product and its induced norm, we
respectively use (a,b), := a”Qb, Va,b € H (:= R"), and [lall, := ,/(a,a)y,
Va € H, where @ € RV*V is a positive definite matrix? (which will be denoted
as @ = 0). In the real Hilbert space (#,(-,-)¢), the distance between arbitrary
two elements is given by dq(a,b) := [la —b||,, Va,b € H. Similarly, the dis-
tance between an arbitrary point @ € H and a closed convex set C' is given by
dg(a,C) = minpec |la — b||g, and the projection of h € H onto C is given as

PéQ)(h) = arg mingec dg(a, b).

2Suppose that the original Hilbert space (#, {,-)) is infinite dimensional with the induced
norm ||]|. In this case, we can define a different Hilbert space (#,(-,")o) with a new inner
product (a,b)Q := (Qa,b), Va,b € H, by employing a self-adjoint bounded linear operator
Q : H — H to be strongly positive; i.e., there exists (R 3)a > 0 s.t. (Qz, ) > a||lz|, V& € H.
Such a @ is nothing but a positive definite matrix when # is finite dimensional (see, e.g., [123]).
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6.2.1 Constant-Metric Version

Let (hy)ren be a sequence of adaptive filtering vectors. To compute hy, from hy,
at each k € N, we use information on the closed convex sets Ci(k), 1=1,2,---,q,
that are defined by means of observable data so as to contain the estimandum h*
with high reliability. Define the weights to those data-dependent closed convex
sets wgk) €(0,1,:=1,2,---,q, k € N, satisfying » 7, wgk) = 1.

Consider here the real Hilbert space (#,(-,-)g), where @ = 0 is a positive
definite matrix designed appropriately by means of a priori knowledge on the

estimandum. We now define the objective function ©, : H - R, k£ € N, as

L ®) (k) (ks ®) k)
61 (h) = Lk; alhi, C;7ldg| ] RIS Do Qlhi, C;7'] #
0 otherwise.
In this case, Fix(Ty0,) = lev<O, = Nies, Ci(k), where J, =

{i =1,2,---,q: h & Ci(k)}. Note that the factor dQ[hk,C’Z-(k)], i=1,2,---,q,
is constant in terms of h. Indeed, dQ[hk,Ci(k)] is an automatically-determined
weighting factor and gives a large weight to a set ‘far’ from hy in the sense of the

metric dg. Application of Scheme 2.0.2 to ©y, derives the following algorithm.

Algorithm 6.2.1 (Adaptive Parallel Quadratic-Metric Projection (APQP) Algo-
rithm). For an arbitrarily chosen initial vector hy € H, generate a sequence of

adaptive filtering vectors (hg)ren C H as

th;:T{thkM [Zw (,”)h,~c h”

VEk € N, where A\, € [0,2] is the step size and

2

Zw C(k) hk) hy,
i Q . (k)
- LET,
=1 ¢ Q
! otherwise.

In the derivation of Algorithm 6.2.1, we use the following fact.
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Fact 6.2.2. Given any closed convex set S C H, the following hold.

() do(h.S) = ||h = P?(h),

,Vh € H.
Q
(b) For the function ¢ : H — R, h — dg(h, S),

O
—5 S
dq@yp(h) 3 ¢'(h) = do(h, S) fh &5,

0 otherwise.

Algorithm 6.2.1 is endowed with the remarkable properties of APSM (see Fact
2.0.3). In fact, Algorithm 6.2.1 is a generalization of some existing algorithms, as

shown below.
Example 6.2.3 (Special examples of Algorithm 6.2.1).

(a) Let T =1, q = 1, and ka) := Vi be a linear variety. Then we get the
following algorithm:

which turns out to be a general form of the ESP algorithm [77,78] (see Propo-
sition 6.2.4).

(b) Let T = I, Q = I, and Cy(k), i = 1,2,---,q, be closed half-spaces, as
defined in Sec. 6.3.2. Then we obtain the adaptive-PSP algorithm [129,135].
An efficient weight design for adaptive-PSP has been proposed in [135].

Example 6.2.3-(a) implies that ESP is derived by APSM. A merit to derive an
algorithm by APSM is that some remarkable properties of the algorithm come to
light immediately with no extra efforts (see Fact 2.0.3).

Proposition 6.2.4. In (6.2.1), let> V}, := arg min,cy HU{'U —dk‘ K Vk € N,
where Uy € RYX" (N > r) is the input matriz and dj, € R" the output vec-
tor (see Sec. 6.3.1); if Uy has full column rank, then Vi is reduced to Vi :=
{veH :Ujv=dy}. Then, (i) Q := I yields APA [58, 81,89, 93,105], and (i)

Q = A ! with A == diag(ay, g, - -+ ,an) = 0 yields the ESP algorithm [77, 78],

3To see V}, is a linear variety, see [129, Appendix B].
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hy

Figure 6.2.1: A geometric interpretation of ESP for r = 1 and APA for r =1 (i.e.,
NLMS).

where a;; == ayy"" ! (i =1,2,---, N ) with a positive constant o and the exponen-
tial ratio v € (0,1). The notation diag(---) is used for a (block) diagonal matriz;

the arguments are scalars or square matrices.

Proof: See Sec. 6.2.3.A. O

For intuitive understandings to the relations between APA and ESP, we present
a geometric interpretation in Fig. 6.2.1. For simplicity, we set N = 2. According
to the exponentially decaying feature of room impulse responses, we put h* close
to the axis of h; rather than that of hy. For both APA and ESP, we let r = 1
and \;y = 1, £ € N. In this case, the algorithms can be written as hy.; =
B — M [ex(he)/ | Q@ ual|p| @' ws, where @ = A7 for BSP and @ = T for
NLMS (i.e., APA with r = 1). By Vi, = {h € H : ujh = di} = {h € H :
(Auy, h) 4,1 = di}, one can see that the normal vector of V}, with the metric d 41
is Auy. Figure 6.2.1 illustrates that ESP gives a better direction of update than
APA due to the use of d 4-1.

To derive another algorithm based on a min-max criterion, we define the ob-

jective function ©, : H — R, k €N, as ©(h) := max dol(h, c™, vk e N. In
g

— 4yttt

this case, Fix(Typoy) = leve® = N, C*. Define Ji(h) := {i = 1,2,--- ,¢ :

dQ(h,C’i(k)) = Ok(h)}. Application of Scheme 2.0.2 to © derives the following

algorithm.

Algorithm 6.2.5 (Adaptive Parallel Min-Max Quadratic-Metric Projection (AP-
MQP) Algorithm). For an arbitrarily chosen initial vector hy € H, generate a
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sequence of adaptive filtering vectors (hy)ren C H as

)

hk+1 =T hk + )\kM](f) [ Z I/(k)Péc(i)) (hk) - hk
€Tk (hy) ’

Vk € N, where A\ € [0,2] is the step size, v >0 satisfies Zbejk(hk) k) — 1, and

2

.
Jax ‘Pé%))(hk) — hy,
MP = =
k > Y (k) (hy) — hy
leJk(hk) Q
\ 1 otherwise.

We name Algorithm 6.2.5 Adaptive Parallel Min-max Quadratic-metric Pro-
jection (APMQP) algorithm because the algorithm asymptotically minimizes the
sequence of max functions (see Fact 2.0.3). To derive Algorithm 6.2.5, we use the

following fact.

Fact 6.2.6. Given any closed convexr sets S; C H for i = 1,2,---,q, define a
function ¢ : H — R, h — max;_ ... ,dg(h,S;). Then,

$(h) ! |h =, m PP ()| ifhg (S,
db(h) > ¢'(h) := e W57 ) @

0 otherwise,

where J(h) == {i = 1,2,--- ,q : dg(h,S;) = ¢(h)} and v; > 0, Vi € J(h),
satisfies 3 ,c zpy Vi = L.

Example 6.2.7 (Design of the strongly attracting nonexpansive mapping 7).

(a) A simplest example of the strongly attracting nonexpansive mapping T is a
(single) projection operator P (whzch corresponds to the original version
of APSM [124,126]), where K (> h™) is a hard constraint set arising from,
e.g., physical aspects etc. In this case, it is obvious that Fix(T) = K and the

(@)

mapping Py~ is 1-attracting nonezpansive. At any time instant k, moreover,

it is guaranteed that hy € K.
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One may have multiple constraint sets K;, j =1,2,---,m, to be used; e.g.,
in case that PI((Q) has no closed-form expression or has prohibitively high com-
putational complexity, one can approximate K by the intersection of multiple
‘simpler’ closed conver sets K; D K, j =1,2,---,m; here we use ‘simpler’
in the sense that the projections onto the convexr sets require less compu-
tational loads. In such scenarios, there are various ways to design T for
handling those multiple sets in asymptotic sense without using the projection

onto their intersection, as shown in Example 6.2.7-(b)—(d) below.

Let Ty == [[7, (1—Aj)I+AjP}(§?>] (m > 2), where \; € (0,2), Vj =
1,2,---,m. Then, Ty is strongly attracting nonexrpansive with Fix(T) =
Aj
2
pansive. In particular, if \; =1,Vj =1,2,--- ,m, then T is 1/m-attracting

-1
N~ K; [99,100]. More precisely, T is (Z;nzl ) -attracting noner-

nonexpansive. In the robust adaptive beamforming application, the efficacy
of T1 has been verified [101,102], where \; =1,¥j =1,2,--- ,m, and Q = I

are employed.

Let Ty i= 31wl | (1= M) + N PEY| (m > 2), where \; € (0,2), Vj =

1,2,---,m, and the weights w](-k) > 0,Vk e N, 7 =12,---,m, satisfy
Z;nzl w](-k) = 1. Then, Ty is strongly attracting nonecpansive with Fix(T) =
ﬂ;nzl K;. In particular, if \j; = X € (0,2), Vj = 1,2,---,m, then Ty is a
2— )\

-attracting nonexrpansive mapping.

Remark 6.2.8 (On the strongly attracting nonexpansive mapping).

(a)

Designing the strongly attracting nonexpansive mapping T as Ty or Ty in
Example 6.2.7, it is guaranteed that the sequence of adaptive filtering vectors
(hi)ken generated by Algorithm 6.2.1 converges to a point h € Fix(T) =
M=, K; under reasonable conditions (see Fact 2.0.3), although there is no

guarantee that hy € Fix(T') at each iteration k.

In case that one has a single constraint set being a linear variety, there
exists a more efficient method named embedded-constraint parallel projec-
tion techniques [127,132], and its efficacy has been verified in applications to
DS/CDMA wireless communication systems [132,140].
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(c) Besides Ty and Ty, there exists large variety in the choice of T based on
Fact 2.0.1. Performance evaluations of such design of T are currently under

investigation.

The following proposition suggests the stability of algorithms derived from
Scheme 2.0.2 including APQP and APMQP.

Proposition 6.2.9 (Monotone approximation property of Scheme 2.0.2). Suppose
that Fix(T) N Fix(Tsye,)) # 0. For any initial vector hy € H, the sequence
(hi)ken C H generated by Scheme 2.0.2 satisfies the following.

(a) For any h* € Fix(®;) [= Fix(T) N Fix(Tyye,)) # 0] (see p. 11 for the
definition of ®y,),

[hiyr — Y| < [lhe — B7[|, VE €N

(b) If in particular A, € [0,2) and hy ¢ Fix(®y), then for any h* € Fix(Py),

ki1 = Y| <|[lhe = h7[|, VE €N
Proof: See Sec. 6.2.3.B. a

6.2.2 Variable-Metric Version

The metric dg is constant in time in Algorithms 6.2.1 and 6.2.5. Although this is
essential to ensure the properties of APSM (see Fact 2.0.3), it would be valuable
in practice to present a more general form where the metric itself changes in time.
We thus show a variable-metric version of APQP below; a variable-metric version

of APMQP can also be given in a similar way.

Algorithm 6.2.10 (Adaptive Parallel Variable-Metric Projection (APVP) Algo-
rithm). Let Ty, Vk € N, be a strongly attracting nonexpansive mapping in the real
Hilbert space (1, (-, ")q, ), where Q= 0, Vk € N. For an arbitrarily chosen initial
vector hy € H, generate a sequence of adaptive filtering vectors (hg)ken C H as

3

q
hiyy1 =Ty {hk + )\kMgcg) [Z wz(k)Pg?’v‘lﬁ)(hk) — hy
i=1 ‘
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VEk € N, where A\, € [0,2] is the step size and

(3

4 2

P(Qk)(hk) — h,

c® 0
MY = E - g (NG,
= LET,,
’“ > w PR (hi) — by .
i=1 ' Q.
1 otherwise.

The mapping T} can be designed in a way similar to Example 6.2.7. Algorithm

6.2.10 is a generalization of some existing algorithms, as shown below.

Example 6.2.11 (Special examples of Algorithm 6.2.10). Let T =1, ¢ =1, and
C’fk) := Vi be a linear variety. Then we get the following algorithm:

which turns out to be a general form of the Proportionate NLMS (PNLMS) algo-
rithm 19,29, 33,41, 86] and the Proportionate APA (PAPA) algorithm [10,48,64,
120] (see Proposition 6.2.12).

Proposition 6.2.12. Define Vi :={h € H: U h =d;} (U, e RV*", dy e R")
as in Proposition 6.2.4. Then, Q) = G’,;l yields the Proportionate APA (PAPA)
algorithm [10,48,64,120] (or the Proportionate NLMS (PNLMS) algorithm [9, 29,
33,41,86] if r = 1), where Gy, := diag(agk), agk), e ,a%c)) >~ 0 is defined as follows
(33, 41]:

(k)

(k) ._ Vi -
CYZ- ._ﬂ’ VZ—]_,2,"',N,
23:1'7]‘

where %(k) ‘= max {angx, |hl(k)|} and L% .= max {6, |h§k)|, |hgk)|, e |h§]§)|}
(k)

3

Modified designs of matriz Gy, have also been proposed in [9, 10,29, 48, 64,86, 120].

Here, o and § are small positive constants and h;"’ the ith component of hy.

Proof: See Sec. 6.2.3.C. O
In [120], the set-membership PAPA algorithm has been derived by using ||-||G;1
with the criterion commonly used to derive the APA. Propositions 6.2.4 and 6.2.12
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provide with an interesting interpretation that the APA, ESP, and PAPA algo-
rithms are based on iterative relaxed-projections onto the same linear varieties Vj,
with the different metrics dy, d -1, and dejl, respectively.

As a direct consequence of Proposition 6.2.9, we obtain the following proposi-
tion on Algorithm 6.2.10.

Proposition 6.2.13 (Monotone approximation property of Algorithm 6.2.10).
Suppose that Fix(Ty) N Fix(Type,)) # 0. For any initial vector hy € H, the
sequence (hy)ren C H generated by Algorithm 6.2.10 satisfies the following.

(a) For any h* € Fix(®;) [= Fix(Ty) N Fix(Tspe,)) # 0],

lhiss — B llg, < Il — R, . Yk €N

||Qk
(b) If in particular A\ € (0,2) and hy &€ Fix(®y,), then for any h* € Fix(®y),

lhiss — B llg, < I — R, , Yk €N

Proof: See Sec. 6.2.3.D. O

Note that, unlike the monotonicity in Proposition 6.2.9, the approximation is
effectively improved from hj to hj, in the sense of a reasonable and time-varying
metric. A convergence analysis of proportionate-type NLMS algorithms has been
presented in [32] under the assumption of sufficiently small step size.

Finally, remarks on Algorithms 6.2.1 and 6.2.10 are given below.
Remark 6.2.14.

(a) (Inherent parallelism of Algorithm 6.2.1) In the update equation of Algorithm
6.2.1, each projection in the summation can be computed independently, thus
the algorithm has the inherently parallel structure [4,17,22]. In fact, in
addition that the algorithm is relevant to parallel implementation, it has
a fault tolerance nature; i.e., a possible trouble in some of the employed
processors does not seriously affect the overall performance of the algorithm

(which is not true for the other major adaptive algorithms).

(b) (Overall complexity of Algorithms 6.2.1, 6.2.5, and 6.2.10) Note firstly that
the complezity shown below excludes the computation to design Q) for Al-

gorithm 6.2.10 (e.g., in [33], the ‘strobe down’ technique is introduced in
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PNLMS to reduce the complezity for designing Q). The complexity of the
proposed algorithms depends on the metric employed. By employing an ef-
ficient metric (i.e., the matriz Q (or Q) has a special structure such as
diagonal), the overall computational complexity (the number of multiplica-
tions/divisions) is kept O(N) [If Q (or Q,.) has no special structure, then
the algorithms require matriz-vector multiplications/. In addition, by employ-
ing q concurrent processors, the computational complexity imposed on each
processor at each iteration is approximately (2r + 4)N. This is the same
as the complezity of the adaptive-PSP algorithm with the Fuclidean metric
[129] (see [135] for a computational comparison among the adaptive-PSP and
other major algorithms). The proposed algorithms can significantly raise, by
increasing q, convergence speed while keeping low time-consumption, which
s very important for real-time applications including AEC. Moreover, al-
though Algorithm 6.2.5 should execute the maz-function, it is negligible when

q s relatively small.

6.2.3 Proofs
A. Proof of Proposition 6.2.4

The first goal is to show
T
P(h) =h - Q' (ULQ?) ex(h), Vh e, (6.2.3)

where the operation (-)' denotes the Moore-Penrose pseudoinverse [6,85]. By
the definition of P‘(/?), we have z* = P‘(/?)(h) — h € argmin.ey,—n ||2]lg,
where V; —h := {v —h : v € V;} = argmin.cy ||U} 2 + ex(h)||,. Defining
z:= Q'"?z and U, := Q~'/?U,, we have |z[lq = lIz]l; and Uiz + ek(h)HI =
H ﬁ:'z? + e (h) HI By the definition of the pseudoinverse operator, the unique vec-

~ . . ~T .
tor of minimum Euclidean norm Z* (= Q"/?2*) in arg minzcy HUk z +ei(h) HI 1S

. ~ 7\ T . “12 (757 T . .
given by — (Uk> er(h). Hence, we have z* = —Q (Uk> ex(h), which veri-
fies (6.2.3).

From (6.2.3), we can immediately verify that Q := I in (6.2.1) yields hy, :=
hi, — M\ (UF)ter(hy), which coincides with the original formulation of APA [89).
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Similarly, @ := A~" in (6.2.1) yields
hisr = hy — M AV2HUT AV ey (hy). (6.2.4)

In the original formulation of ESP, the equations [77, (33) and (34)] are rewritten
as UL AU LB (k), Bo(E)]T = eg(hy), which is guaranteed to have a solution only
under the assumption that U} AU} is invertible (< U}, has full column rank).
Under this assumption, it holds that (ﬁ:)T = ﬁk (ﬁfﬁk>l, by which with
(6.2.4) we obtain the update recursion hyy; := hy — N\ AU (U AU}) er(hy);
it is readily verified that this recursion is equivalent to the original formulation in
[77]. O

B. Proof of Proposition 6.2.9

Although the proof can be given more simply with the aid of [99, Proposition 2.5],

we present a complete proof for self-containedness below.

(i) Let Ay € (0,2). Then, it is obvious that Fix((1 — A\x)l + MeTipe,)) =
Fix(Typ(o,))s and thus Fix(®;) = Fix(T) N Fix(Tye,)) by Fix(T) N
Fix(Type,)) # 0 [127]. Since Tyye,) is firmly (i.e., l-attracting) nonex-
pansive [127], (1 — M) T + M\ Tip(o,) is 2=

-attracting quasi-nonexpansive.

n2— )
Ak +2— A\

k
Hence, ® is ng,-attracting quasi-nonexpansive with ng, =

which follows that

1Biss = B*|* = 1@k (i) — B*|I* < llhe = B*|1” = na, g — @k (Ba)||”
< ||hy —h*|]>,  Vh* € Fix(dy). (6.2.5)

Moreover, by hy € Fix(®;) < hy — O, (hy) # 0,

hi & Fix(®;) = ||hpr — h*|| < ||he — B7||, VR* € Fix(3;).  (6.2.6)

(ii) Let Ay = 0. Then Tyy,) = I, and &, = T is n-attracting nonexpansive with
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Fix(®;) = Fix(T) N Fix(Tyye,)) = Fix(T), which follows that

lhesr = BY1” = | @k(he) — B*|” < [lhe = B*[” = n[|hy — Dy ()|
< ||hr —R*|]*,  Vh' € Fix(®y). (6.2.7)

Moreover, by hy € Fix(®y) < hy — p(hy) # 0,

hi & Fix(®;) = ||hps — h'|| < ||he — B7||, VA" € Fix(3;).  (6.2.8)

(iii) Let Ay, = 2. Then, &, = T(2Typ,) — ). Since Type,) is firmly quasi-
nonexpansive, 275,e,)—/ is quasi-nonexpansive (see Fact 2.0.1), and it is ob-
vious that Fix(2Tse,) — I) = Fix(Tyye,)). Hence, @y is quasi-nonexpansive
with Fix(®;) = Fix(T) N Fix(Tipe,)), which follows that

|hesr — B*||> = ||Pi(he) — RY||* <||he — B*||”, VR € Fix(®;).  (6.2.9)

(6.2.5), (6.2.7), and (6.2.9) verify Proposition 6.2.9-(a), and (6.2.6) and (6.2.8)
verify Proposition 6.2.9-(b). O

C. Proof of Proposition 6.2.12

PAPA is essentially given as
hk+1 = hk — )\kaUk(UZGkUk)*lek(hk), (6210)

although, in the original formulation of PAPA in [48], a regularization parameter
is introduced in order to force the matrix U} GU}, to be invertible. In the same
way as in Appendix 6.2.3, we can show that (6.2.2) for Q, := G, " is reduced to
(6.2.10) under the assumption that U} GU} is invertible, which completes the
proof. O

D. Proof of Proposition 6.2.13

The proposition is proved in the same way as the proof of Proposition 6.2.9,

because the time-variability of Q) and 7} makes no difference in the proof. a
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D:L Q Room
h* N
Echo hy ZO"’
Rec. W _ 1% Eﬂ/@dual
Room mn; — d; ex(h) Echo

Figure 6.3.2: Acoustic echo canceling scheme.

6.3 Efficient Acoustic Echo Cancellation by Ef-

fective Metric

6.3.1 Acoustic Echo Canceling Problem

A basic model of AEC system [15,56] is illustrated in Fig. 6.3.2. Let k£ € N
denote the time index and N € N* the length of echo canceler hy. For notational
simplicity, we let the length of the estimandum h*, i.e., echo impulse response,
be also N. With a sequence of input signals (ug)reny C R, let (ug)ren C H be a
sequence of input vectors defined as wy := [ug, up_1," -+, Up_n41)t. For r € N¥,
define Uy, := [ug,up_1, - ,up_r11] € RV (usually r < N). Also define the
noise vector as my, = [ng, M1, - ,Mkrr1]. € R, Vk € N, where (ny)ren is a
sequence of additive noise process. We introduce the linear model for the data
process (di)reny C R': dy := U h* + ny. The goal of the echo cancellation is to
remove (or cancel) the echo part U} h* in dj, by subtracting the output of adaptive
(linear) filter hy € H, k € N, as dy, — UkThk. Since h; &~ h* implies successful echo
cancellation, the problem can be interpreted as system identification (i.e., identify
an unknown system h* by means of input-output relations), which is also known

as adaptive filtering.

6.3.2 Proposed Acoustic Echo Canceling Algorithm

In this section, we present an efficient AEC algorithm based on (i) parallel sub-
gradient projection onto data-dependent sets with a metric simpler than d 4-1 and
(ii) projections onto two constraint sets that are ‘spheres’ in half-length subvector

spaces with a special metric.
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It is well-known that room impulse responses decay exponentially on average
under the so-called diffused sound field assumption [69]. Moreover, it has ex-
perimentally been shown in [77,78] that averages of an impulse response and its
variations in a room are well-modeled by exponentially decaying shapes with the
same exponential ratio; this ratio can be measured in advance since it is almost
invariable under fixed acoustic conditions of the room (e.g., size, absorption coef-
ficient etc.). However, real impulse responses do not exactly decay exponentially,
while there almost always exists a notable difference between the first and sec-
ond halves of impulse responses. Thus the following simple matrices can be good

alternatives of the matrix A (see Proposition 6.2.4).

Example 6.3.1 (Simple metric design). For notational simplicity, we assume that
the filter length N is divisible by 2 (or /). Simple metrics are then defined by the
following N-by-N diagonal matrices:

B = dlag (IN/Q, ’)/N/2IN/2) > 07
C := diag (IN/4, 7N/4IN/4, 'YN/QIN/zb '73N/4IN/4) ~ 0.

Here I, denotes the n-by-n identity matriz, and vy € (0,1] is the exponential ratio

introduced in Proposition 6.2.4 (For the design of vy, see Sec. 6.4.2).

The simple structures of B and C bring an advantage in robustness against
model-mismatch as well as computational complexity (Note that this type of
discrete steps has also been presented in [77, §3.3] as practical modification of
the matrix A for multiple DSP implementation in order mainly to reduce the
computational costs). For instance, the computation of a’ Ba requires N + 1
multiplications. In other words, only one extra multiplication, compared with
@), is required. This computational efficiency comes from the following rela-
tion: a” Ba = af a) +7"?alan), Va = [af,), af)|" € H.

The next step is to define data-dependent closed convex sets that contain the
estimandum h* with high reliability. We define the stochastic property set as
follows [129]:

Cy = Cylp) == {h € H : gi(h) == |lex(h)||; — p < 0}, Vk €N,

where e, : H — R", h — UL h — d, is the error (or residual) function and p > 0
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a parameter governing the membership probability that h* € Cy(p) (For unified
notation, we use ||-||; rather than the common notation ||-||,). Noise statistics
are involved in the design of p [129, Ex. 1]. Since the computational cost for

the direct projection onto Cy(p) is prohibitive in general, we introduce an outer-

) h) = Péf) (h). Simple design of

approximating half-space H, (h) s.t. PISQ_(h)( )
k

such a half-space is given below.
Example 6.3.2 (Design of outer-approximating half-space).

(a) (Standard subgradient outer approximation) A commonly used half-spaces
[129,134,135,138] is H (h) = 1L, (h) := {2 € H : (z — h, Vig)gr(h)),
+gk(h) < 0} D Ci(p), where dqygr(h) > Vigigr(h) = 2Q 'Uiei(h)
(see the definition of subdifferential in Chapter 2). Note that 0q)gr(h) =
{Ma)gk(h)} in this (differentiable) case. We stress now that we are con-
sidering (H,(,-)g)- The projection onto I, (k) has the following simple

closed-form expression:

gr(h) . ,
—————"—>ViQg(h) ifh &1 (h),
P (h) = [Vow®[l, < ‘ (6.3.1)

h otherwise.

)

(h)(h) requires only O(N) complezity.

The computation of PI(I?
,

(b) (Deep outer approzimation [87]) For & € [—p,infycy gr(y)], define a closed
half-space Hy (h) := 11 ,(§, h) as

{zet:(e—h Vauh),
ealh)i= 4 42 [ge(h) — € = a(h) — ()] <0} i h & Culp),

H otherwise.

Practically, it is reasonable to use 11, ,(—p, h) (see Remark 6.3.3-(b) below).
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The projection onto H,;Z(—p, h) has the following simple closed-form expres-

ston:
h 2 |oulh) 0 - p[g’“(h)”]]v (h) i h & Tgy(—p, h)
(@) . 2 @gr(h) i ra(—p,h),
PrzacomP) = [V (W]}
h otherwise.
(6.3.2)

Remark 6.3.3 (On subgradient outer approximation in Example 6.3.2).

(a) The use of I (k) forr =1, p=0, and Q = A7 reproduces ESP with the
step size within [0, 1], while the use of I, ,(0,h) for r =1 and Q = A~
reproduces ESP with the step size within [0, 2].

(b) The closed half-spaces presented in FErample 6.3.2 satisfy (i) Cir(p) C
H, (hy), and (i) hy, & Cy(p) = hy & H, (hy) [129, Lemma 2|, [87, Theorem
4], which implies that the boundary hyperplane of H, (hy) separates C(p)
from hy if hy & Cr(p).

(©) ITh & Culp) (b € N), then T, (6, h) C Tiy, (k). V€ € [p,intyen gu(y)]. Ifin
addition §I(I]f1)n = mingey gr(y) exists, then H;Z(fr(rlfi)n, h)NCr(p) # 0 [87, The-
orem 5|. This means with Remark 6.3.3-(a) that the boundary hyperplane of
H,;Q(flgﬁ)n, h) supports C(p), thus H,;Q(flgﬁ)n, h) is a tightest outer approzima-
tion among all half-spaces obtained by translating the standard subgradient
outer approximation H,;l(h). Since it is often the case that N > r, we can
mostly assume flgfl)n = —p. Note that even if infycy gi(y) > —p, the half-

space H,;Q(—p, h) is always a proper subset of the standard subgradient outer

approzimation 11, , (h).

The final step is to design the strongly attracting nonexpansive mapping 7T :
H — H. We define T := PI((?)PI((?) with the constraint sets K, and K; defined as
below [Note: In this case, T'is 1/2-attracting nonexpansive with Fix(T) = K,N K
(see Example 6.2.7-(b))].

Example 6.3.4 (Design of constraint sets). We denote the early and tail parts
(i.e., the first and second halves) of any vector ® € H as x() € RM? and T €
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RN/ respectively; i.e., x =: [a:%;)a:a)]T We then introduce the following two

constraint sets that respectively restrict the energy of early and tail parts of hy.:

2

K= | "0 | eq. ||| MO <e
| hoy | L0 Jllg
- - - 112
_ )| ko o
Kt = eEH: S Et
| by L hoy [lg

Here c.,e¢ > 0 should be designed by using an estimate of oy and the exponential

ratio 7y (see Proposition 6.2.4).

For an intuitive understanding, we define

Rei={hw € RV : bl = hlyQuibe <5}

Q. € RV/2N/2 . ypper-left submatrix of Q.

Noting that no constraint is imposed on h) in Ko(C % = RY), K, imposes the
same constraint as K.(C R¥/2) on h(e. Since Q > 0 implies Q,, > 0, it is seen
that I?e is an ellipsoid in general while it is a sphere with the special metric dq_, .
Suppose, for example, that the metric dg-1 is employed. In this case, with the
Euclidean metric, the ‘ellipsoid” has a larger radius in the first half of h() than
the second half, which agrees with the decaying feature of echo impulse responses.
Remind now that we are considering the real Hilbert space (4, (-,)¢). Since K,
has a simple ‘sphere’ structure with the special metric, the projection onto K, is

simply given as follows:

he
oe(h) | ifh ¢ K.,
h otherwise,

where ¢.(h) := H[h%;)OT]THQ. Similarly, we can obtain the projection onto K, as
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follows:
o it h ¢ K
hie) @ Ve ' v
Vh = €EH, P.w(h) = ——h
[ R ] w0 au(h)
h otherwise,

where ¢(h) := [|[07 R ]| -

Given ¢ € N*, define the control sequence Z; := {Lgk), Lék), e ,Lgk)}, Vk € N
The control sequence indicates the closed half-spaces to be processed at time k.

The proposed AEC algorithm is given as follows.

Algorithm 6.3.5 (Adaptive Quadratic-Metric Parallel Subgradient Projection
(AQ-PSP) Algorithm). For an arbitrary initial echo canceler hy € H, generate a

sequence of echo canceling vectors (hg)reny C H as
i%+1;:féfﬁﬁg){hk+duﬁdkl§:1%m;ﬁgb%ﬁhk)—i%]}, vk €N,
LEI}C

where \ € [0, 2] is the step size and

2

Z wb(k) HPI({?)(}L )(h'k) - hk
LET,, . _
= 2 thk € m HL (hk)a
Mk = % (k) p(Q) LET},
> Py () = P
LEI}C Q
1 otherwise.

For the design of the half-spaces H, (hy), see Example 6.3.2. Figure 6.3.3
illustrates the behavior of AQ-PSP, where we set ¢ =3 and \, = 1, Vk € N, and
omit the constraint sets K, and K; for visual clarity. The three dotted-arrows
express the projections, with an ‘appropriate’ metric dg, of hy onto H, , H, ,,
and H,_,, respectively. The weights w®) finally determine the direction of update
by taking a point from the shaded-triangle, and the update vector is scaled by Ay
and My, (For an efficient design of the weights, see Chapter 4).
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4[[( Hielh iy (hi)

Figure 6.3.3: A geometric interpretation of the proposed APQP algorithm for
q=3.

6.4 Numerical Examples

6.4.1 Effects of Different Metrics for Two Extreme Im-

pulse Responses

We examine the effects of different metrics d 41, dg-1, dy, and dG;1 (see Proposi-
tions 6.2.4 and 6.2.12, and Example 6.3.1) in simple system identification problems
for N = 256. The USASI signal (see Sec. 4.5) is used for the input uy. The noise
ny, is white with Signal to Noise Ratio (SNR) := 10log;o(E{z;}/E{ni}) = 10
dB, where z; := ujh*. We evaluate the achievement level of identification by
the system mismatch defined as 101og,,(||h* — hy||3/||R*||3) at kth iteration. For
simplicity, we employ the NLMS-based algorithms: ESP for » =1 and PNLMS.

In the first simulation, we model the estimandum h*(=: [k}, h3, -+, hi]T) as
hf = 0.4yt Vi=1,2,--- N, with v = 0.95775. For ESP, we set (I) \; = 0.03,
Vk € N, with d4-1; (IT) A, = 0.1, Vk € N, with dg-1; and (ITT) A, = 0.2, Vk € N,
with dy (which is nothing but NLMS). For ESP-(I) and ESP-(II), the true value of
v is employed in A and B, respectively. For PNLMS, we set A\, = 0.1, Vk € N, with
dg-1 proposed in [33,41] for 0 = 5/N and § = min{0.01,0.0001/0} by following
the recommendation in [33,41] (see Proposition 6.2.12). The step size for each

algorithm is tuned so that all the algorithms attain performance comparable with
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each other in initial convergence speed. The results are drawn in Fig. 6.4.1. As
expected, ESP-(T) exhibits the best steady-state performance among the employed

algorithms.

In the second simulation, we model h* as h} = 0.4, Vi = 1,--- ,N/2, and
hi = 0.4yN? Vi = N/2 +1,---,N, with v = 0.95775. For ESP, we set (I)
A, = 0.5, Vk € N, with dy-1; (II) Ay, = 0.05, Vk € N, with dg-1; and (III)
A = 0.2, Vk € N, with d; (the matrices A and B are the same as in the first
simulation). For PNLMS, we set A\, = 0.2, Vk € N, with the same metric dg-1 as
in the first simulation. The results are drawn in Fig. 6.4.1. Contrary to the results
in Fig. 6.4.1, due to the special structure of the estimandum h*, ESP-(I) exhibits
the worst steady-state performance among the employed algorithms, while ESP-
(IT) exhibits the best steady-state performance since the metric dg-1 is fit for the

structure.

The results of those two simulations suggest that, if the estimandum has a
special structure, an appropriate design of metric can drastically improve the per-
formance of adaptive filter. Next we verify the efficacy of the proposed algorithms
in the AEC problem.

6.4.2 Evaluation of the Proposed, ESP, and PAPA Algo-

rithms in the Acoustic Echo Cancellation Problem

We evaluate the performance of AQ-PSP (Algorithm 6.3.5) and its variable-metric
version named Adaptive Variable-metric PSP (AV-PSP) compared with ESP and
PAPA in the AEC problem under the following conditions (Note that AV-PSP is
a realization of Algorithm 6.2.10). The input signal u; is English-native-male’s
speech recorded at sampling rate 8 kHz [see Fig. 6.4.2]. The noise ny is white
with SNR = 10 dB. A real impulse response* h* € RY recorded in a small room
[see Fig. 6.4.2] is used with N = 1024. Although in this chapter we concentrate
on the case in which the length of h* coincides with N, a case in which the length

of h* is four times greater than N has been investigated in simulations in [141].

4The impulse response is available at http://www.echochamber.ch /responses/960/rooms.zip;
the name of the file is “1960small room.wav”. Although the frequency of the original is in fact
44.1 kHz, we convert it by the matlab command ‘resample’.
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Table 6.4.1: Steady-state performance of the proposed algorithms for ¢ = 8 in
ERLE and system mismatch.

Algorithm AV-PSP | AQ-PSP AQ-PSP AQ-PSP AQ-PSP | AQ-PSP
[4,7(02)] | [4, %0.4)] | [B,7(02)] | [B,~(0.0)] | [T

ERLE [dB]| 20.5 19.3 17.5 17.3 16.5 15.2

System

Mismatch [dB] —17.3 —16.8 —15.9 —15.2 —14.9 —13.8

To measure the level of echo cancellation as well as that of identifica-
tion of echo impulse response, we adopt, in addition to system mismatch,
the Echo Return Loss Enhancement (ERLE) [15]. To obtain smooth ERLE
curves, after calculating instantaneous ERLE at kth iteration as ERLEE?Qp(k) =
101og,0[22/(2x — ulhy)?], we pass the vector ERLE(

tmp
filter three times. Namely, ERLE(k) := ERLEY) (k)
1

k+L D _
k+ 10—k —10)+1 (Zj;/}(kfz) ERLEﬁﬁlp(])), for i =

and ¢ (n) := max{n,0} for any integer n. For numerical stability against poor

through a smoothing
with ERLE/ D (k) =

tmp

0,1,2, where ¢ = 5000

excitation of the speech input signals, we use certain regularization and threshold
for all the algorithms. We remark here that the step size for each algorithm is
selected in each experiment so that all the algorithms attain performance compa-
rable with each other in initial convergence speed. Discussion about the results is

separately given in Sec. 6.4.3.

A. AV-PSP versus AQ-PSP

Figure 6.4.6 draws a comparison among the proposed algorithms: (I) AV-PSP, (II)
AQ-PSP for Q = A™!, (IIT) AQ-PSP for Q = B™', and (IV) AQ-PSP for Q = I
(which is nothing but adaptive-PSP [129]). It is known that, under the diffuse
sound field assumption, the ensemble average E,, (n =1,2,---, N) of the squared
room impulse responses decays exponentially (see [26]); i.e., E, := E{(h:)*} =
FEyexp[—nlog10%/(TsoFy)]. Here Fy [Hz] is the sampling frequency and Ty [sec.]
is the time interval in which the reverberant sound energy drops down by 60
dB [69]. Hence, for a given estimate of Ty, say T\eo, the exponential factor
(2T5F,)|. In Fig. 6.4.6,
)

For all algorithms, we set r = 1, ¢ = 8, p = p3(= 0) (p3: the peak value of

should be designed as 7 = (Tgo) := exp | —log 106/
7(0.2) = 0.99569 is employed for Proposed (II) and (III
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Table 6.4.2: Steady-state performance of the PAPA and ESP algorithms for r = 2

in ERLE and system mismatch.

Algorithm PAPA ESP ESP ESP
[A, v(0.2)] | [B, 7(0.2)] | [I]

ERLE [dD] 18.0 16.0 14.0 12.4

System Mismatch [dB] | —14.3 —13.2 —11.2 -9.9

Table 6.4.3: Steady-state performance of the PAPA and ESP algorithms for r = 8

in ERLE and system mismatch.

Algorithm PAPA ESP ESP ESP
[A, v(0.2)] | [B, 7(0.2)] | [I]

ERLE [dB] 18.6 17.1 14.4 12.6

System Mismatch [dB] | —15.0 —13.3 —10.6 -9.0

the probability density function of the random variable ¢ := [|n||5 [129]), and
w = 1/g, Vi = 1,2,---

; ,q, Yk € N. For the outer-approximating half-space
H, (h), moreover, we employ Il ;(h) in Example 6.3.2-(a) [Note that, since we
employ r = 1 and p = 0, the use of II;_, (h) with \; gives the same results as the
use of I, ,(h) with A;/2; cf. Remark 6.3.3-(a)]. For AV-PSP [Proposed-(I)], we
set \p = 0.4, Vk € N, with dG;1 designed in the same way as PNLMS in Sec. 6.4.1.
For AQ-PSP, we set A\, = 0.4, Vk € N, for Proposed-(II); A\, = 1.0, Vk € N, for
Proposed-(IIT); and A\, = 1.0, Vk € N, for Proposed-(IV). To examine the pure
effect of the newly introduced metric, we omit the projections onto the constraint
sets K, and K, which is equivalent to assigning very large values to ¢, and .
Figure 6.4.7 draws the estimation Tgo versus the steady-state performance for
the AQ-PSP based algorithms. The parameters employed in each algorithm are
exactly the same as in Fig. 6.4.6 except for 7(Ts). ERLE and system mismatch
in Fig. 6.4.7 and Tables 6.4.1-6.4.3 express the values averaged uniformly over
the last 3.2 x 10° and 1.0 x 10° samples (40 sec. and 12.5 sec.), respectively. We
observe that the best performance of AQ-PSP for both @ = A™' and Q = B™!
is achieved by Teo = 0.2. The exponential curves in Fig. 6.4.2 draw the diagonal
elements of A for Tgo = 0.2 and 0.4, respectively. It is seen that 7(0.2) = 0.99569
is more likely than ~(0.4) = 0.99784 for the envelope of the impulse response,
which agrees with the above observation. Note by the definition of ’Y(fao) that
Y(Teo) € (0,1] < Ts € (0,62.5]. Since 7 increases up to 1 as Ty increases
within (0,62.5], it is expected that the performance of AQ-PSP for @ = A" ' and
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Q = B! approaches the level achieved by AQ-PSP with @ = I, which is verified
by the results in Fig. 6.4.7. Table 6.4.1 shows the steady-state performance of the
proposed algorithms employed in Figs. 6.4.6 and 6.4.7.

B. PAPA versus ESP

Figures 6.4.8 and 6.4.9 draw comparisons of ESP [77] and PAPA [10, 48, 64, 120]
for r = 2 and r = 8, respectively. In Fig. 6.4.8, we set, for ESP, (I) A\, = 0.1,
VEk € N, with A and 7(0.2); (II) A\, = 0.2, Yk € N, with B and 7(0.2); and (III)
A, = 0.2, Yk € N, with I (which is nothing but APA), and, for PAPA, \; = 0.2,
Vk € N, with Gy the same as in Sec. 6.4.1. In Fig. 6.4.9, we set, for ESP, (I)
A = 0.02, Vk € N; (IT) Ay, = 0.05, Vk € N; and (III) A, = 0.05, Vk € N, and,
for PAPA, \; = 0.05, V& € N (the matrices employed are exactly the same as in
Fig. 6.4.8). Tables 6.4.2 and 6.4.3 show the steady-state performance of ESP and
PAPA corresponding to Figs. 6.4.8 and 6.4.9, respectively.

C. Proposed versus ESP and PAPA

Figure 6.4.10 compares best performance, in our extensive simulations, of the AV-
PSP, AQ-PSP, PAPA, and ESP algorithms, respectively. AV-PSP is Proposed-(I)
in Fig. 6.4.6; AQ-PSP is Proposed-(II) in Fig. 6.4.6; PAPA is the one in Fig. 6.4.9
(r = 8); and ESP is ESP-(I) in Fig. 6.4.9 (r = 8). It is seen that the proposed
algorithms significantly outperform the other methods both in ERLE and system

mismatch.

6.4.3 Discussion

We discuss the steady-state performance according to the results obtained in
Sec. 6.4.2. Table 6.4.1 shows that AV-PSP gains, compared with adaptive-PSP
(i.e., AQ-PSP with I'), more than 5 dB in ERLE and 3.5 dB in system mismatch
at the cost of 2N extra multiplications and computation to design G. It also
shows that AQ-PSP with A for an appropriate v(0.2) gives close performance to
AV-PSP without the cost of computation to design G, while for (0.4) its perfor-
mance degrades by 1.8 dB in ERLE compared with the one for v(0.2). Moreover,
it is seen that AQ-PSP with B for 7(0.2) gains, compared with adaptive-PSP,
more than 2 dB in ERLE, while for v(0.4) its performance degrades by 0.8 dB,
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which is relatively small compared with AQ-PSP with A. This observation and
Fig. 6.4.7 imply that the use of the metric dg-1 is more robust than d -1 against
mismatch in the estimate of exponential factor v. The above arguments suggest
that d4-1 or dg-1 should be a reasonable choice in relatively static environments
(e.g., in a conference room), in which it is easy to obtain a good estimate of ~,
while dejl or dg-1 should be reasonable in dynamic environments (e.g., in mobile
applications); see also [64]. It should be remarked that the use of dg-: attains
significant improvements with almost the same computational complexity as the
Euclidean metric dy. Similar relations are also seen in Tables 6.4.2 and 6.4.3 for
ESP and PAPA. Finally, Fig. 6.4.10 with the aid of Tables 6.4.1 and 6.4.3 shows
that AV-PSP gains (i) 1.9 dB in ERLE and 2.3 dB in system mismatch compared
with PAPA for » = 8, and (ii) 3.4 dB in ERLE and 4 dB compared with ESP for
r=2_8.

6.5 Conclusion

We have proposed a family of efficient adaptive filtering algorithms based on par-
allel quadratic-metric projection. The quadratic metrics involved have included
both constant and variable ones in time. Our extensive simulations have ver-
ified that the proposed algorithms significantly improve the performance while
keeping linear computational complexity when we employ an efficient metric. In
particular, AV-PSP (a realization of APVP) well performs practically, although
its convergence analysis requires further investigation.

The study in this chapter has given light on a concealed path to improve
the performance of adaptive filtering algorithms. Concretely speaking, the study
has verified that the performance of projection-based adaptive filtering algorithms
can be drastically improved by designing the metric appropriately according to a
priori or a posteriori information about characteristics of estimandum. We believe
that the proposed algorithms shall contribute in a variety of applications such as

multiple access interference suppression in CDMA /MIMO systems.
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Figure 6.4.4: System mismatch curves for (a) an exponentially decaying impulse
response and (b) an impulse response which is flat in the first and second halves

respectively. For ESP, we set r = 1 and use the matrices (I) A, (II) B, and (III)
I.
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Figure 6.4.6: A comparison among the proposed algorithms for ¢ =8 and r = 1,
and v = 0.99569. The employed algorithms are (I) AV-PSP, and AQ-PSP for (II)
Q=A"'(II)Q=B" and (IV) Q = 1.
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Figure 6.4.7: Effects of the estimation of Ty, ranging within [0.05,1.5] on the
steady-state performance in (a) system mismatch and (b) ERLE.
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Figure 6.4.8: A comparison between the PAPA and ESP algorithms for » = 2. For
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r =1, and v = 0.99569. For PAPA, we set r = 8. For ESP, we set r = 8 with the

matrix A.






Chapter 7
General Conclusion

Motivated by the growing demand for an adaptive signal processing technique
well-performing even in nonstationary environments, this study has developed
efficient adaptive filtering algorithms and has proved their efficacy in applications
to acoustic and communication systems. The proposed algorithms are based on
the Adaptive Projected Subgradient Method (APSM), which has been introduced
in Chapter 2. The main body of this thesis has been constructed by four chapters:
Chapters 3—6.

Chapter 3 has presented Adaptive Parallel Constrained Projection (A-PCP)
method, a family of efficient linearly-constrained adaptive filtering algorithms
based on embedded constraint and parallel structure. Two efficient blind adaptive
algorithms belonging to A-PCP have been proposed for Multiple Access Inter-
ference (MAI) suppression in DS/CDMA wireless communication systems. The
simulation results have demonstrated that the proposed algorithms attain ap-
proximately 10 times faster convergence speed than the conventional SAGP and
CNLMS algorithms and, simultaneously, BER performance close to the MOE lin-
ear filter.

Chapter 4 has presented Pairwise Optimal Weight Realization (POWER), an
efficient adaptive weighting technique to bring out the potential of the adaptive-
PSP algorithm aggressively while keeping its computational efficiency. The
POWER technique employs an efficient formula to compute projection onto the
intersection of two closed half-spaces for an efficient approximation of an ideal
direction of update. Important properties of POWER, including optimality in

the sense of (i) pairwise and (ii) maximum minimization, have been presented.
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The proposed algorithm enjoys fast and stable convergence and good steady-state
performance while keeping linear complexity.

Chapter 5 has presented a class of efficient adaptive filtering algorithms for
Stereophonic Acoustic Echo Cancellation (SAEC) problem based on two key ideas.
The first idea is to utilize, based on the adaptive-PSP algorithm, information
provided by preprocessing. The second idea is to employ POWER in an efficient
manner for further acceleration with keeping linear computational complexity. In
fact, the POWER technique has turned out to exert far-reaching effects in the
SAEC problem. The proposed technique has exhibited excellent convergence and
tracking behavior after a change of the echo paths in the extensive simulations.

Chapter 6 has presented a family of very flexible adaptive algorithms based
on quadratic-metric. First, two adaptive algorithms, in which the metric is con-
stant in time, have been presented: Adaptive Parallel Quadratic-metric Projection
(APQP) algorithm and Adaptive Parallel Min-max Quadratic-metric Projection
(APMQP) algorithm. Then, an adaptive algorithm, in which the metric is vari-
able in time, has been presented: Adaptive Parallel Variable-metric Projection
(APVP) algorithm. The proposed algorithms (APQP/APMQP/APVP) has the
valuable monotone property. By employing an efficient metric, the overall com-
putational complexity of the proposed algorithms is kept linear w.r.t. the filter
length. The efficacy of the proposed algorithms has been verified in the acoustic
echo canceling application.

The consequence of this study proves the efficacy of APSM in real-world appli-
cations, since all the proposed algorithms are naturally derived by APSM. All the
algorithms developed in this study moreover have the inherently parallel structure,
thus enjoying fault-tolerance nature, as mentioned clearly in Chapter 4; those algo-
rithms which are just parallelizable somehow is never equipped with such nature.
The fruit provided by this study will contribute to developments in a wide range

of engineering applications including acoustic and communication systems.
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