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SUMMARY  This paper presents two novel blind set-
theoretic adaptive filtering algorithms for suppressing “Multiple
Access Interference (MAI)”, which is one of the central burdens
in DS/CDMA systems. We naturally formulate the problem of
MAT suppression as an asymptotic minimization of a sequence
of cost functions under some linear constraint defined by the de-
sired user’s signature. The proposed algorithms embed the con-
straint into the direction of update, and thus the adaptive filter
moves toward the optimal filter without stepping away from the
constraint set. In addition, using parallel processors, the pro-
posed algorithms attain excellent performance with linear com-
putational complexity. Geometric interpretation clarifies an ad-
vantage of the proposed methods over existing methods. Simu-
lation results demonstrate that the proposed algorithms achieve
(i) much higher speed of convergence with rather better bit er-
ror rate performance than other blind methods and (ii) much
higher speed of convergence than the non-blind NLMS algorithm
(indeed, the speed of convergence of the proposed algorithms is
comparable to the non-blind RLS algorithm).

key words: blind MAT suppression, DS/CDMA system, linearly
constrained algorithms, adaptive projected subgradient method

1. Introduction

The goal of this paper is to develop a blind Multiple Ac-
cess Interference (MAI) suppressing algorithm, being
“efficient” in the sense of (i) low computational com-
plexity and (ii) high speed of convergence, for Direct
Sequence Code-Division Multiple-Access (DS/CDMA)
systems.

One of the noticeable advantages of CDMA sys-
tems is that users can share time and frequency by ex-
ploiting distinct spreading codes, or, in other words,
users can transmit their information symbols at the
same time and frequency. CDMA receivers, on the
other hand, are usually affected by interference origi-
nated from transmitted symbols of other users. This is
commonly referred to as MAI and it is known to dete-
riorate the overall capacity. A great deal of effort has
been devoted to MAT suppression [1-11].

To realize high throughput systems, blind methods

Manuscript received December 10, 2004.
Manuscript revised March 4, 2005.
Final manuscript received April 28, 2005.
fThe authors are with the Department of Communica-
tions and Integrated Systems, Tokyo Institute of Technol-
ogy, Tokyo, 152-8552, Japan.
a) E-mail: masahiro@comm.ss.titech.ac.jp
b) E-mail: renato@comm.ss.titech.ac.jp
¢) E-mail: isao@comm.ss.titech.ac.jp

and Isao YAMADA')  Regular Member

for MAI suppression, which do not require a training
sequence (or pilot signals), have been particularly in

great demand [6-11]. In 1995, Honig et. al. proposed a

the problem is formulated as a constrained optimization
with a linear constraint defined by the desired user’s
signature. In 1997, Park and Doherty proposed a sim-
ple set-theoretic blind method called Space Alternating
Generalized Projection (SAGP) [7], which utilizes gen-
eralized projections onto non-convex sets (see Remark
2 and [12]). The SAGP exhibits better performance in
the steady state at the expense of slower convergence
rate than the method in [6]. In [13], it is reported that
fast algorithms are necessary to keep good performance
especially in wireless communications.

In 1998, Apolinario Jr. et. al. proposed the Con-
strained Normalized Least Mean Square (CNLMS) al-
gorithm [14], which embeds the constraint used in [6]
into the direction of update, providing fast convergence.
Unfortunately, the CNLMS does not yet achieve suffi-
cient speed of convergence because it takes just one
datum into account at each iteration. In 2004, on the
other hand, a fast blind MAI suppression method was
proposed [15], which we call Blind Parallel Projection
(B2P) algorithm. The B2P developed the idea of the
SAGP by using a certain parallel structure and convex-
ification, leading to excellent performance. The filter
recursion (update) of the B2P is constructed by two
steps at each iteration (cf. Remark 2): (i) shift the filter
in descent directions of cost functions and (ii) enforce
it in the constraint set.

This paper presents two embedded constraint blind
algorithms for an adaptive MAI suppression filter. Em-
bedded constraint and parallel structure are the keys to
realize fast convergence with linear order complexity
(see Remarks 1 and 2). The proposed algorithms de-
velop the idea of the CNLMS for acceleration of conver-
gence by taking into account more than one datum with
several parallel processors at each iteration. Actually,
the algorithms are derived from a set-theoretic adap-
tive filtering scheme named Adaptive Projected Subgra-
dient Method (APSM) [16-18], which has been success-
fully applied to the stereophonic acoustic echo cancella-
tion problem [19,20]. Roughly speaking, the algorithms
minimize asymptotically a sequence of cost functions
that are defined by the received data at every sampling



time. Each iteration is constructed by two stages as
follows. The first stage of the algorithms estimates the
amplitude of the transmitted signal (as in [7]) and the
transmitted bits. By using these estimates and the con-
straint used in [6], closed convex sets called stochastic
property sets [see (9) in Sec. 3] are newly designed and,
based on the distances to these sets, a reasonable cost
function is defined. The second stage updates the MAI
suppression filter in a descent direction of the cost func-
tion. The proposed algorithms have no need to enforce
the filter in the constraint set unlike the SAGP or the
B2P, since the constraint is embedded into the direction
of update; i.e., the filter does not step away from the
constraint set. Geometric interpretation clarifies an ad-
vantage of the proposed algorithms over the CNLMS,
the SAGP and the B2P algorithms (see Remark 2).
Simulation results exemplify dramatical improvements
expected by the geometric interpretation.

Preliminary versions of this paper are presented in
[21,22].

2. Background
2.1 System Model

A Binary Phase-Shift Keying (BPSK) short-code
DS/CDMA system is briefly summarized below. The
system model considered in this paper is exactly the
same as the one presented in [7,11,15]. Without loss
of generality, assume that the desired user’s signature
sy satisfies ||s1]| = 1 asin [7]. The received data process
(r[i])ien C RN (N: the length of signature) is

ri] = Ayby[i 31+ZA;IJ1 [i]51 + nli], Vi € N, (1)
=2

where

A7 > 0 : amplitude of the 1-st (desired) user
bi[i] € {—1,1} : i-th transmitted bit of the desired user

1 1Y
81 € {——. —} : signature of the desired user

VN VN

n[i] € RN :i-th noise vector.

Moreover, 4; (2 < 1 < L) is the amplitude of the I-
th interference, and b[i] and 3; are respectively the
i-th interfering symbol bit and the interfering vector
generated by [-th interfering user’s parameters such as
associated data bits and signature. In the presence of
K users, the number of interferences L — 1 can range
from K — 1 to 2(K — 1), due to relative delays of the
K — 1 interfering users [4].

The problem addressed in this paper is to suppress
efficiently the MAI, Zz » Ay bi[i]5; in (1), with a linear
filter without amphfymg the noise n[i] severely.
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2.2 Adaptive Projected Subgradient Method [16 18]

Let C C RN be a nonempty closed convex set; a set
K C RV is said to be convexz provided that V,y € K,
Yv € (0,1), v& + (1 — v)y € K. Then, the projection
operator Po : RN — C maps a vector € RV to the
unique vector Po(z) € Cs.t. d(x,C) := ||z—Pco(x)|| =
, where ||z|| = (z,2)"?, Vz € RV
(x,y) := 2"y, Vx,y € RV, and the superscript T
stands for transposition). Also let ©,, : RNV — [0, 00)
be a continuous convez function and 00 (y) the subdif-
ferential of © at y; a function © : RN — R is said to
be convez if O(ve + (1 —v)y) <vO(x) + (1 —v)O(y),
Vz,y € RY and Vv € (0,1). Then, the following
scheme asymptotically minimizes (0,,),en over C.

Scheme 1: (Adaptive Projected Subgradient
Method (APSM) [16-18]) Generate a sequence

(hn)neN by

_ O, (hn)
Fo (h" AnTer (b On (h”))=
i1 = it O (hn) #0, (2)

h,, otherwise,

where hg € RV, @) (h,,) € 30, (h,) and X\, € [0,2] is

the relaxation parameter.

Basic properties of Scheme 1 are given in Appendix A.

3. Proposed Embedded Constraint Adaptive
Algorithms

This section provides two set-theoretic algorithms for
adaptation of a blind MAI suppression filter h,, € RV,
where n € N denotes the iteration number. All avail-
able data for the adaptation are assumed to be the
sequence of received vectors (r[i]);en and the desired
user’s signature s; (NOTE: In the absence of Inter-
Chip Interference (ICI), the signature coincides with
the spreading code and may be readily available [10]).

3.1 Set Design

To avoid the self-nulling't(i.e., canceling the desired
user’s signals), the following constraint is commonly
imposed on the filter (e.g., [6]):

h,eC,:={hecRN :(hs))=1}, VneN (3)

"The subdifferential of © at y is the set of all the subgra-
dients of © at y; 900(y) := {a € RY : (x — y,a) + O(y) <
O(x),Ve € RV}

1In the case when the amplitude of some interference is
greater than that of a desired user, the filter may track not
the desired user but the interference. In such a case, the
desired user’s signal is suppressed. The set C, can avoid
such a situation.
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Actually, (h,,s1) can be any positive constant, how-
ever, for simplicity, we let (h,,s;) = 1. For any
h, € C;, Vi € N,

<hn,’l"[ ] Albl

ZAlbl h.,51) +

For suppressing the MAI without amplifying noise
severely, the second and third terms on the right side
of (4) should be reduced as much as possible. Thus,
a Minimum Mean-Squared Error (MMSE) filter is de-
fined as follows [9]:

(hn, m[i]) .(4)

B € axgmin B {((h,7li)) — A1)’} (5)
where E{-} denotes the expectation; see Appendix B
for relationship between the MMSE and the Minimum
Output Energy (MOE) optimal filters. Since A; and
b1[i] in (5) are not available, we use the following esti-
mates [7]:

Atmgr = Ay g+ (|(hmr[n])| - /Lm,) , VYneN, (6)
gl,n[i] ‘=sgn <h‘n, T[7]> ’ vn € N: (7)

where g],n (2170 =0) and 31,,[2] are respectively esti-
mates of the amplitude A; and the i-th transmitted bit
b1[i] at iteration number n, and v € (0, 1] is the forget-
ting factor; see Remark 3. For simplicity, we define the
signum function sgn: R — {—1,1} as, ifa > 0, sgn a =
1, otherwise, sgn a = —1 (Va € R). With the estimates
in (6) and (7), the problem is reformulated as finding a
point in

argmin £ { (<h, rli]) — ﬁl,nﬂﬁl,nm)?} . (8)

Instead of the expectation in (8), we newly introduce
the following stochastic property sets [cf. Remark B.1

(d)]:

Ci) = {1 € Y« ((hrli) = Aupaibiolil)” < o).

VneN, VieZ,:={n,n—-1,--- ,n—q+1}, (9)

where Z,, is the so-called control sequence (cf. [23]) with
q elements (see Remark 3) and p > 0 is a parameter
that determines the reliability of the set to contain the
MMSE optimal filter h* in (5). Intuitively, an increase

of p inflates the set C [ ], and thus we call p inflation
parameter (p should be described as p,, ; because it can
be designed independently for each set: in the follow-
ing, however, such subscripts are omitted for notational
simplicity).

Since C, is completely reliable to contain h*, our
qtra‘regy iq to use C5 as a hard (absolute) constraint set

and {C’ []}zeI as a collection of sets to which the
distances should be reduced.

3.2 Proposed Algorithms

Let us derive the proposed algorithms from Scheme 1
with the sets in (3) and (9). Given ¢ € N\ {0}, let
{wfn)},,ezﬂ C (0,1] satisfying >, 7 w™ = 1,Vn €N,
be the weights. Define the cost function

( (n)

W,
Y —ayd(ha, OV N Cy)
ez, In
On(h) = d(h‘: Cr(?n) [’] N CS): (10)
if L) = 3" w™d(h,, C{M N C) #0,
LEL,
L0, otherwise,

where d(h, G5 [11Cy) (= | B = Py (0)])) Ve e
Tn, is the distance function of the variable vector h €
RN to ‘rhe set CS"[1] N C, (which qhould be reduced).
When L\ 75 0 (& hn & N, C [1] N Cs), the

o (hn,C [] N Cs) is given to each dis-

tance function, where LL )

weighting ¥

is the normalizing factor; the
sets far from h,, have large weighting. When LS,,I) =0,

we have h, € ()¢, Cﬁ(.") [t] N Cs, hence nothing is left
to do in this case. A subgradient of ©,, at h,, is given by

Onhn) = # 2et, wl™ (h" — Porpync, (n )) €
00,(h,) if L 75 0; for details, see [18, p.607, Ex-
ample 3.

Application of C = RN and ©,(h) in (10) to
Scheme 1 yields the following algorithm.

Algorithm 1: (Blind Parallel Constrained Pro-
jection Algorithm)

Requirements: the control sequence Z,,, the weights

W™ > 05t > et w'™

jection matrix Q := I — s;s] (I: the identity matrix,
NOTE: ||s1|| = 1), the inflation parameter p > 0, the
step size A\, € [0, 2] and the forgetting factor v € (0, 1].

= 1, the signature s7, the pro-

Initialization: ;1\1’0 =0,hyg =851 €C;
Algorithm:
1) Estimation of A; and b[¢]

A = A1+ (\(hm r[n])| — A\],n)
b1l =sgn (b, (i), 1€,
2) Update of filter

hui1 = hy+ A, MD (Z w!

€L,

o( LnC, (R )h">’
(11)

where, for any h € C,,
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Table 1  Adaptive Blind Algorithms. Po (x) = Qx + s1, V& € RN
Algorithm | Adaptation rule
OPM-GP [ hys1 = Po, {hn + 1 (Pi, (hn) = hn)} = by — p 52 E0 Qrn]
where H, := {h: (h,r[n]) = 0}
SAGP Aynt1 & by, are computed by (6) & (7)
huy1 = Po, {hn + 1 (P9 (hy) — hy)}, R
Py () = by — PTGl ] (B, wn]) > 0,
where P(g)(hn) = Ha, ll[n 11~
P (,)(hn) =h, — %r[n}, otherwise,
with HE) .= {h: (h,7[n]) = £ A; .11}
CNLMS At ny1 & by, are computed by (6) & (7)
hn+1 = h, + )7 (PCén')[n]ﬂCs (hn) — hn)
B2P At n41 is computed by (6)
hnt1 = Po, S hn + s (ZJ 0 w(n)P (")(h ) — hn)}
where €™ i= {h : [(h, [ — )| < Avnsr}
( (bl - Ay piabrnlt] = /B Algorithm:
- [ ]TQT[ ] Qrli], 1) Estimation of A; and b [¢]: the same as Algorithm 1
if (h, r[1]) — A, 'n+1bln[] > /P, 2) Update of filter

Pcﬁ")[t]ncs(h) = <h‘/ T[I’D Al n+1bl n[ ] + \/_

hf Q 3
PRl .
1f<hl’l"[[]> — Al,n+1bl,n[’f] < *\/ﬁ,
L h, otherwise,
(12)
(n) 2
Z,ez Wy HP (n) []NC, (h‘n) - hn
MWD HZLEI w"'P, n( nC (h”) — ha
if hn ¢ ez, O3 1 NG,

1 otherwise.

NOTE: For all n € N, h,, € C; holds, since (i)
hy € C, and (11) h, € Cs = h,11 € Cs from (3)
and (11). The proof of (12) is given in Appendix C.
A weighted average of multiple projections as in (11)
is referred to as parallel projection [24], since it can be
computed in parallel by using g concurrent processors.

On the other hand, application of C = RN and

O©,(h) :== ®,(Pc,(h)), where
ot
S Y d(hn, ) (R, O L),
®,(h) = { €T, In
it LY =3, wiMd(hn, CSV 1)) #0,
0, otherwise,

to Scheme 1 yields the following algorithm (for details
about the derivation of the algorithm, see [18, p.610,
Example 5]).

Algorithm 2: (Blind Constrained Parallel Pro-
jection Algorithm)

Requirements & Initialization: the same as Algo-
rithm 1

(")[ h )_hn>

Bni1 =hn+ A M) Py (Z w

LET,

(13)
where C, = {h € RN : (h,s;) = 0} is a translated
linear subspace of C and

Pg (h) = Qh,
( (hr[]) = Avpabinld] - VP
h - 2 [ ]7
[l [¢]ll
f<h,’l"[l,]> A1 n+1b1 n[[] > \/ﬁ
Pegny, (h) = _(hyr[d]) - Ay piabrnlt] + /P "l
[
lf<h,’l"[l]> A17n+1b11n[ll] < *\/ﬁ,
\ h, otherwise,
(n) 2
ZLEI" Wy HP(w(")[L] (hn) - h'n,
(n) E
MP = ‘ Pe, (ZLGI" W Pcf,")[t] (hn) = h") H
if ZLGIH wt(n)Pcl()")[,,] (h‘n) ~h, ¢ Csl:
1 otherwise.

)

For any linear subspace M C RV, M+ C RV is
defined as M+ := {z € RV : (z,m) = 0, Ym € M}.
Algorithm 2 belongs to the family of Embedded Con-
straint Adaptive Projected Subgradient Method (EC-
APSM) [16-18]. Moreover, Algorithm 1 can be gen-
eralized into a new family of embedded constraint al-
gorithms shown in Appendix D.

Remark 1: (Computational Complexity)
Note that the computation of Qa = a — si(s!a),
Va € RN, requires 2N multiplications. Moreover,
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c™mln s
|

RN h(l) Cs

™ — 110 ¢,

--------- » Algorithm 1: A},
= Algorithm 2: hg—?-]
— ONLMS: A?),
Fig.1 A geometric interpretation of embedded constraint

methods: the proposed algorithms and the CNLMS algo-
rithm. The dotted area shows C")[n] N C{™ [n — 1] N C..

Vi € T, \ {n}, “r[)7Qr[t] and Qr[:] in Algorithm 17
and “||7[1]||* in Algorithm 2” are computed at the pre-
vious iterations. Hence, we see that both Algorithms 1
and 2 require (4¢ + 5)N multiplications at each itera-
tion. Furthermore, note that each term in the summa-
tion in (11) [or (13)] can be computed in parallel (in-
dependently). Therefore, with ¢ concurrent processors,
the number of multiplications imposed on each proces-
sor is reduced to 9N no matter how many projections
are used; i.e., the complexity order imposed on each
processor is linear. This implies that the proposed al-
gorithms are suitable for real-time implementation. On
the other hand, the RLS-based-MMSE method [8] and
the subspace approach [9], which are well-known blind
methods, require O(N?) and (4L+3)N +O(L) multipli-
cations, respectively. Moreover, for good performance,
the subspace approach needs to detect the exact num-
ber of strong interferences, which increases the overall
system complexity.

Table 1 gives a unified view, with projection oper-
ators, to the following blind algorithms: the normalized
OPM-based gradient projection (OPM-GP) [6, 7], the
SAGP [7], the blind CNLMS that is based on the idea
of [14] combined with our defining sets in (9), and the
B2P [15]. The OPM-GP [7] is a normalized version of
the blind MOE algorithm [6]; the algorithms are called
respectively projected NLMS and projected LMS in [25].
It is not hard to see that the CNLMS is a special case
of Algorithm 1 with ¢ = 1 and p = 0. It should be re-
marked that the steady state performance of the B2P
and the SAGP may be different, since the algorithms
use different sets as shown in Table 1. The SAGP uti-
lizes the so-called generalized projection P'9)(h,,) (see
e.g., [12]), which gives a nearest point from h,, in the
non-convex set, HT(LJF)UHT(L*). The generalized projection

is not a strict projection because it is not always unique
(cf. the definition of projection in Sec. 2-B). In fact, if

1 2
L

= = =p Algorithms 1 and 2: hle_z_l, hff_*)_l

3
------------ > B2P: h7)|
—-= SAGP: h("),
Fig.2 A geometric interpretation of non-embedded con-
straint methods (the SAGP and the B2P) and the proposed

methods. The dotted area shows CS™[n] N C[n — 1].

(hn,7[n]) = 0, there exist two nearest points from h,, in

bz ESRACY; Aamb P (h,) and Py (hy). Fortunately, a
geometric comparison of the SAGP with the proposed
algorithms is possible (see Remark 2), since Cén) [n] co-
incides with H\" [or Hr(f)] when sgn(h,,,r[n]) =1 (or
sgn(h,,r[n]) = —1), by (7), (9) and Table 1. It is eas-

ily seen that C’é") used in the B2P is a closed convex

set bounded by the hyperplanes HT(L+) and H,(f) used
in the SAGP.

Figures 1 and 2 illustrate geometric interpreta-
tions of the proposed algorithms compared with a sim-
ple embedded constraint method (the CNLMS) and
non-embedded constraint methods (the SAGP and the
B2P), respectively. A geometric interpretation of the

OPM-GP is also possible; the set H,, is nothing but
the translated subspace of HS" [or H,(f)]. For visual
clarity, however, it is omitted. For the proposed algo-
rithm and the B2P, the uniform weights, w(™ = 1/2
(Ve = 1,2), are employed with ¢ = 2 parallel pro-
cessors. For the B2P, the step size is set to M,,.
For the other methods, the step sizes are set to 1.
The MMSE optimal filter h* is assumed to satisfy
h* € C,E") [n] N C,E") [n — 1) N Cs. All algorithms are
assumed to have, if necessary, a common amplitude es-
timation g]’n+] and a correct bit estimation Blm [n]. A
remark on geometric comparisons is given below.

Remark 2: (Geometric Comparisons)

Referring to Fig. 1, we see that the proposed algo-
rithms generate closer points to the MMSE optimal
filter A* than the CNLMS due to its parallel struc-
ture; i.e., the proposed algorithms utilize multiple data
simultaneously. As also seen in the figure, Algorithm
1 takes an averaged direction of exact projections onto
{C"[1)NC,}oez, , while Algorithm 2 takes an averaged
direction of relaxed projections. The “relaxation” de-
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Fig.3 SINR curves of Algorithm 1 with different values

of inflation parameter p under SNR=15 dB.

pends on the angle between s; (the normal vector of
the hyperplane C;) and r[] (the one of the boundary
hyperplanes of C\™[1]).

Referring to Fig. 2, we see that the B2P gener-
ates a closer point to h* than the SAGP due to its
parallel structure. The proposed algorithms generate
even closer points than the B2P due to its embedded
constraint structure in addition to its parallel struc-
ture. We also see that the SAGP and the B2P are
constructed by two steps; the second step Pc, (+) in Ta-
ble 1 is to enforce the filter in the constraint set. On the
other hand, the CNLMS and the proposed algorithms
update the filter along the constraint set, and hence
they are constructed by one step.

Finally, from our observation, a simple strategy for
the design of v and ¢ [cf. (6) and (9)] is given below.

Remark 3: (On Design of v and q)

From Remark B.1 (d) in Appendix B, A\]’n+] ~ A
should be valid for good steady state performance,
which can be obtained with small v, although it may
decrease the speed of convergence [7]. From our experi-
ence, ¢ leads to good performance when Ty, ... /qT, > 0.1,
where T, .. and T} denote the period when the channels
are almost constant and the bit period, respectively.

To exemplify the discussion in Remark 2, we
present numerical comparisons in the following section.

4. Simulation Results

This section provides the results of some computer
simulations, all of which are performed under the fol-
lowing conditions. The number of interfering users is
(K — 1) = 5, and all users have amplitude 10 times
greater than the amplitude of the desired signal A; = 1.
Signals are modulated by 31-length Gold sequences
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Fig.4 Proposed algorithms versus other blind methods in

SINR under SNR=15 dB.
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—+—Proposed 2 - changing p
| |7 Optimal Filter h”

5 10 15
SNR (dB)

10

Fig.5 BER curves of the proposed algorithms with p (i)
fixed throughout simulations and (ii) switched after conver-
gence.

(N = 31), which are chosen randomly. For all algo-
rithms, hg = s; € Cs is employed and, if the estima-
tion of the amplitude is needed, the forgetting factor is

set to v = 0.01, by following the way in [7,15].
4.1 Effects of Inflation Parameter

First, the effects of the inflation parameter p in (9)
are examined. Figure 3 compares the output Signal
to Interference-plus-Noise Ratio (SINR) performance of
Algorithm 1, which at the n-th iteration is obtained by

Zgzl <h$zu)7 S1 >2

(ni ,r(u)[n]Ag")b(lu)[n]sl>:|

ZU
u=1 A(lﬂl

SINR,, :=

5 -
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Fig.6 Proposed algorithms versus other blind methods in
BER.

Here h{*) and 7(*)[n] are the respective vectors at the

u-th realization, Agu) and bgu) [n] are respectively the
amplitude and the n-th transmitted bits of the desired
user at the u-th realization, and U = 500 is the number
of realizations. For simplicity, the path delays of users
2 to 6 are integer multiples of the chip rate aT.. € [0, T3],
a € N, which were chosen randomly with equal proba-
bility among the given multiples at every realizations.
The simulations are performed under Signal (or bit en-
ergy) to Noise Ratio (SNR) := 10log,q 2+ =15 dB,
where o2 is the variance of additive noise. Different
fixed values, p =0, 0.2, 0.4 and 0.7, are assigned to the
inflation parameter. For simplicity, we set r[i] = r[1]
fori < 1, and w™ = ]5, Vi € Z,,. The step size A, = 0.2
(see also below) is employed with ¢ = 16 parallel pro-
jections.

We observe that, although “p = 0”7 exhibits the
fastest initial convergence in the experiments, “p = 0.2”
achieves better steady state performance (“p = 0.4”
and “p = 0.7” are also expected to achieve higher
SINR than “p = (0”7 after more iterations). Consid-
ering the performance in the initial and steady states,
“p=0.2 ~ 602" may be an effective fixed value in this
simulation. Note, however, that p should be designed
by taking into account influence of MAI and estima-
tion errors in %TLnH & Z”,[z] as well as noise. Hence,
the design of inflation parameter needs additional dis-
cussion, which will be addressed in a future work; a
simple fundamental analysis on this designing problem
is reported in [26]. With an appropriately designed in-
flation parameter, the step size A, can naturally be set
to 1; h* may not belong to the simple sets we designed
herein, and A,, = 0.2 realizes robustness against such a
situation in our simulations.

A simple review of Fig. 3 brings a natural sug-
gestion that excellent performance in both initial and

steady states will be simultaneously realized by assign-
ing “p = 0” at the beginning and “an appropriate value
of p” after convergence; this suggestion is consistent
with the results in [26]. To verify this suggestion, ad-
ditional experiments are performed below.

4.2 Proposed Methods with Change of Inflation Pa-
rameter & Comparison with Other Blind Methods

We assign 0 at the beginning and 0.7 after iteration
number 500 to the inflation parameter p, and the other
parameters are the same as employed in Fig. 3. Fig-
ure 4 compares the SINR performance, under SNR
=15 dB, of the proposed algorithms with the ones pre-
sented in Table 1 (For comparisons with another ma-
jor blind method, the Constant Modulus with Ampli-
tude Estimation (CMAE) [11], see [15]). For Algo-
rithm 2 and the B2P, the same parameters as Algo-
rithm 1 are employed (For the B2P, the step size is set
to An = 0.2M,,). For the OPM-GP, the SAGP and
the CNLMS, step sizes are set to 0.2 for a fair com-
parison. As expected from Remark 2, we observe that
the proposed algorithms outperform all other methods
in terms of speed of convergence, while attaining excel-
lent SINR in the steady state. Moreover, the additional
computational complexity imposed by the proposed al-
gorithms can be somehow alleviated by using processors
in parallel (see Remark 1). As suggested in the end of
Sec. 4-A, we observe that the steady state performance
of Algorithm 1 is improved by around 1 dB, although,
judged from Fig. 3, the choice of p = 0.7 may not be
the best.

To highlight the steady state performance, the Bit
Error Rate (BER) performance is depicted in Figs. 5
and 6 over SNR ranging from 5 to 15 dB. To capture
the steady state performance in a fair manner, 6000
bits are transmitted at each realization and the last
1000 bits for 100 realizations are used to calculate the
BER. For a comparison, the line by the optimal filter
h* is depicted, which is computed by (B.1) and R, =
A2s,8T + S, A25,57 + 021, with full information,
based on the independence assumption.

Figure 5 compares the BER of the proposed algo-
rithms with “changing the inflation parameter p as in
Fig. 47 and “fixing p to 0”. We see that the BER per-
formance is significantly improved due to the change
of p. In Fig. 6, the BER performance of the proposed
algorithms with changing p is compared with the blind
methods employed in Fig. 4. Referring to Figs. 4 and 6,
we observe that the proposed algorithms achieve much
faster convergence in SINR than the SAGP and the
CNLMS as well as almost the same BER performance
as the optimal filter. Also we observe that the pro-
posed algorithms drastically outperform the OPM-GP
and the B2P in BER. Reviewing Fig. 3 and consider-
ing that the CNLMS is a special case of Algorithm 1
with ¢ = 1 (see (11) and Table 1), another suggestion
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is brought that the steady state performance of Algo-
rithm 1 will also be improved by switching ¢ to 1 after
convergence.

To verify this second suggestion, further experi-
ments for the proposed algorithms are performed under
SNR = 15 dB, where the number of parallel projections
is set to ¢ = 16 at the beginning and it is switched to
1 at iteration number 500 and the inflation parame-
ter is fixed to p = 0 throughout the simulations. The
other parameters are the same as in Fig. 4. Figure 7
compares the SINR performance of the proposed al-
gorithms with the blind methods used in Fig. 4. We
observe that the performance in the steady state is ef-
ficiently improved by decreasing the number of parallel
projections after convergence, as expected by the sec-
ond suggestion. This switching strategy is easily real-
ized in hardware implementation.

4.3 Comparison with Non-Blind Methods

Finally, Fig. 8 compares the proposed algorithms, un-
der SNR=15 dB, with the non-blind (semi-blind) al-
gorithms; Generalized Projection (GP) algorithm [7]
with known amplitude of desired user, the Normalized
Least Mean Square (NLMS) and the Recursive Least
Squares (RLS) algorithms [27] with training sequences.
For the non-blind methods, parameters are adjusted to
achieve the fastest noticeable rate of convergence. For
the proposed algorithms and the B2P, the employed
parameters are the same as in Fig. 4. We observe that
the proposed algorithms achieve rather faster conver-
gence than the non-blind NLMS, and exhibit compara-
ble speed of convergence to the non-blind RLS. These
remarkable improvements are accomplished by the em-
bedded constraint and parallel structures.
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5. Concluding Remarks

This paper has presented two blind adaptive filtering
algorithms for the MAT suppression in DS/CDMA sys-
tems. Since the proposed algorithms are based on the
parallel projection with the embedded constraint struc-
ture, they achieve closer points to the MMSE optimal
filter than the existing methods at each iteration. Sim-
ulation results have demonstrated that the proposed
algorithms exhibit excellent performance.

The extensive experiments presented in this pa-
per suggest that the A-PCP (see Appendix D) and the
EC-APSM may include excellent embedded constraint
algorithms. Those two families of embedded constraint
algorithms (i.e., A-PCP and EC-APSM) are expected
to be useful not only in communications but also in
a wide range of applications. In the presented simu-
57") - %:
Vi € ZI,; see the previous section) for simplicity. For
further improvements, an efficient strategic weighting
technique such as the one proposed in [28,29] would be
effective. An extension of the proposed algorithms is
possible, by following the way in [30], to the more gen-
eral case when the signature at the receiver is complex-
valued as in multipath channels. Furthermore, to em-
ploy the proposed algorithms in multipath channels,
channel estimation techniques should be used and the
algorithms must be robust against errors in the channel
estimation. An extension of the proposed algorithms to

such cases will be addressed in a future work.

lations, we focus on the uniform weights (w

Appendix A: Properties of Scheme 1

Scheme 1 has the following properties [16-18].
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(a) (Monotonicity)

Rpip1 — 5 , Vn €N,

<fon -

Vvh*™ € Q, :={h € C:0,(h) =infyec O,(z)}.

(b) (Asymptotic minimization)
Suppose (©! (h,))nen is bounded and 3Ny s.t. (i)
infrpec On(x) = 0, Vo > Ny and (i) Q :=
Nusn, Qn # 0. Then, we have
lim 0,(h,) =0.

n— oo

Note that ©!, used to derive Algorithm 1 (or Algo-
rithm 2) in Sec. 3 is automatically bounded [17].

Appendix B: MMSE and MOE Detectors

Let us show a simple observation.

Observation 1: Suppose (I) the auto-correlation ma-
trix R, := E{r[i]r[i]"} is full rank (= h* is unique),
and (IT) y,., := E{r[i]bi[i]} = Bs1, 36 € R. Then, for
any given a € R,

R71
h* S1

- m =argmin {((h,r[i]) — ab; [i])?};. (B.1)

-
_ *
= h}

Sketch of proof:
By the condition (I) and “Lagrangian multiplier”
methodology (e.g., [31]), we can easily obtain

he — R,'s

T p—1
S1 Rr Yrp
a T T —1
si R, s

1
R s

T p—1 r )
si R, s

+ R;]yrbi

and, by imposing the condition (II), we readily verify

R71
B =h'=
si R, s
O
Remark B.1:
(a) Without (I), b} is not necessarily unique.

(b) The condition (IT) holds under slow time-varying
fading situations with the following assumption:
E{[iluféi]} = 0, VI € {2,3,---,L}, and
E{b[i]n]i]} = 0.

(c) The filters hg and h’y (= h”) are called the MOE
detector and the (constrained) MMSE detector, re-
spectively. Observation 1 shows that the MMSE
and the MOE detectors coincide under (I) and (II).

(d) By h* = h., (Va € R) under (I) and (II), a natural
question would be: Does the set

CM i) = {h RV : ((h,r[i]) - azl,n[i])Z < p}

with an arbitrarily chosen a contain the opti-
mal filter A*? If “yes”, we could get an opti-
mistic conclusion that the amplitude estimation
A1 n41 is not necessary. Unfortunately, however,
the answer is “no”, of which the reason is as fol-
lows. By (4), (h,r[i]) — aam,[i] has the term

~

Aqb1[i] — abi »li] in addition to the terms of MAI

~ 2
and noise. Hence, bounding ((hﬂ'[i]) — abLn[i])

by small p does not necessarily suppress MAT suf-
ficiently (without amplifying noise severely) when

|A; — «| > 0, which implies, from the context be-
tween (4) and (5), that a should be close to A; in

order to ensure h* € 6,()") [i]. Therefore, high ac-
curacy of the estimation of A; is essential for good
steady state performance.

Appendix C: Proof of Equation (12)

Suppose h € C,. For notational simplicity, in this sec-

tion, we represent the stochastic property set Cén) [t] as
C [see (9)]. The set C is a closed convex set bounded
by two hyperplanes

Hy:={x eR" : (x,r[1]) - A\l,n+1/b\1,n["] =p}
H ={xzeR" : (x,r[]) — A n1binld] = =0}

(a) Assume —/p < (h,r[i]) — A iibin[] < /P (&
h € C). In this case,

In the other cases, Ponc,(h) PHsgnﬂCs(h):

where Hgsgn (sgn: + or —) is the nearest hyper-
plane, from h, of the two H; and H_.

(b) Assume (h,7[1]) — A1 ,i1b1.0[1] > /P (= h ¢ O).
In this case, the nearest hyperplane is obviously
H,, and hence Pono,(h) = P, nc,(h). Since

Hy0Cy = {2’ [s1,7[] = [1 A wsibral + /7] 1
we have (cf. e.g., [32, p.65 Theorem 2])
Pi.no(h) =h - G(G"G)" (G"h —v),

1
Using (s1,h) =1, ||si|| = 1 and I — s8] = Q (see
Requirements in Algorithm 1), we obtain

(R, 7)) = Ay npabial] — /5
r[]7Qr[]

(¢) Assume <h,’I"[L]>—A\1’n+1/l;1’n[L] <—/p(=h¢gl).
In this case, the nearest hyperplane is obviously
H_, and hence Pone,(h) = Pa_nc,(h). In analogy
with (b), we can verify

where G := [r[i], s1] and v := [Al’"+1bl’"["] + \//_)}

Qrl.
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(R, r[])

- 217n+131,n[b] + \/ﬁQ
T QrT]

which completes the proof. O

Pee(h) =h-

Appendix D: New Family of Embedded
Constraint Algorithms

Let us consider the following problem.

Problem 1: Suppose g sets {S,(n)}’_, C RY are de-
fined for each n € N. Find a sequence (h,)nen C
RN that asymptotically minimizes the distance to
({S.(n)}?_, )nen over a linear variety! V.

Setting V = C, and S,(n) = C[1], ¥n € N,
Vi e Z,(:={1,2,--- ,q}), Problem 1 is reduced to the
one in Sec. 3. Conversely, using V and S,(n) instead
of Cy and C\[i], Vn € N, Vi € T,,, in Algorithm 1,
respectively, we obtain the following scheme to solve
Problem 1.

Scheme 2: (Adaptive Parallel Constrained Pro-
jection [A-PCP] Method) Generate a sequence

(hn)neN by

q
> w!™ P, (v

=1

hn+1 = hn + )‘nMn (h‘") - h‘n ’

Vn € N, where hg € V, u,, € [0,2] and

1, 0therw1se.

If, in Scheme 2, the projection onto S,(n) NV
is computationally expensive, an outer approximating
closed half-space can be used instead of S,(n) as in the
adaptive parallel subgradient projection algorithm (see
[33]). When S,(n) (¥n € N) is a hyperplane, the choice
of ¢ = 1 in Scheme 2 derives the CNLMS algorithm
[14].
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fGiven v € R" and a closed subspace M C R", the
translation of M by v defines the linear variety V := v +
M :={v+m:m € M}. Suppose dim(M*) = 1, where
Mt ={x ¢ RY : (zg,m) = 0, Ym € M}. Then, V is
called hyperplane, which can be expressed as V = {x €
RY : (a,z) = ¢} for some (0 #)a € RV and ¢ € R.
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