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for MAI suppression, whih do not require a trainingsequene (or pilot signals), have been partiularly ingreat demand [6{11℄. In 1995, Honig et. al. proposed ablind adaptive multiuser detetion method [6℄, in whihthe problem is formulated as a onstrained optimizationwith a linear onstraint de�ned by the desired user'ssignature. In 1997, Park and Doherty proposed a sim-ple set-theoreti blind method alled Spae AlternatingGeneralized Projetion (SAGP) [7℄, whih utilizes gen-eralized projetions onto non-onvex sets (see Remark2 and [12℄). The SAGP exhibits better performane inthe steady state at the expense of slower onvergenerate than the method in [6℄. In [13℄, it is reported thatfast algorithms are neessary to keep good performaneespeially in wireless ommuniations.In 1998, Apolin�ario Jr. et. al. proposed the Con-strained Normalized Least Mean Square (CNLMS) al-gorithm [14℄, whih embeds the onstraint used in [6℄into the diretion of update, providing fast onvergene.Unfortunately, the CNLMS does not yet ahieve suÆ-ient speed of onvergene beause it takes just onedatum into aount at eah iteration. In 2004, on theother hand, a fast blind MAI suppression method wasproposed [15℄, whih we all Blind Parallel Projetion(B2P) algorithm. The B2P developed the idea of theSAGP by using a ertain parallel struture and onvex-i�ation, leading to exellent performane. The �lterreursion (update) of the B2P is onstruted by twosteps at eah iteration (f. Remark 2): (i) shift the �lterin desent diretions of ost funtions and (ii) enforeit in the onstraint set.This paper presents two embedded onstraint blindalgorithms for an adaptive MAI suppression �lter. Em-bedded onstraint and parallel struture are the keys torealize fast onvergene with linear order omplexity(see Remarks 1 and 2). The proposed algorithms de-velop the idea of the CNLMS for aeleration of onver-gene by taking into aount more than one datum withseveral parallel proessors at eah iteration. Atually,the algorithms are derived from a set-theoreti adap-tive �ltering sheme named Adaptive Projeted Subgra-dient Method (APSM) [16{18℄, whih has been suess-fully applied to the stereophoni aousti eho anella-tion problem [19, 20℄. Roughly speaking, the algorithmsminimize asymptotially a sequene of ost funtionsthat are de�ned by the reeived data at every sampling



2 IEICE TRANS. FUNDAMENTALS, VOL.E88{A, NO.8 AUGUST 2005time. Eah iteration is onstruted by two stages asfollows. The �rst stage of the algorithms estimates theamplitude of the transmitted signal (as in [7℄) and thetransmitted bits. By using these estimates and the on-straint used in [6℄, losed onvex sets alled stohastiproperty sets [see (9) in Se. 3℄ are newly designed and,based on the distanes to these sets, a reasonable ostfuntion is de�ned. The seond stage updates the MAIsuppression �lter in a desent diretion of the ost fun-tion. The proposed algorithms have no need to enforethe �lter in the onstraint set unlike the SAGP or theB2P, sine the onstraint is embedded into the diretionof update; i.e., the �lter does not step away from theonstraint set. Geometri interpretation lari�es an ad-vantage of the proposed algorithms over the CNLMS,the SAGP and the B2P algorithms (see Remark 2).Simulation results exemplify dramatial improvementsexpeted by the geometri interpretation.Preliminary versions of this paper are presented in[21, 22℄.2. Bakground2.1 System ModelA Binary Phase-Shift Keying (BPSK) short-odeDS/CDMA system is briey summarized below. Thesystem model onsidered in this paper is exatly thesame as the one presented in [7, 11, 15℄. Without lossof generality, assume that the desired user's signatures1 satis�es ks1k = 1 as in [7℄. The reeived data proess(r[i℄)i2N � RN (N : the length of signature) isr[i℄ = A1b1[i℄s1 + LXl=2 Al�bl[i℄�sl + n[i℄; 8i 2 N; (1)whereA1 > 0 : amplitude of the 1-st (desired) userb1[i℄ 2 f�1; 1g : i-th transmitted bit of the desired users1 2 �� 1pN ; 1pN�N : signature of the desired usern[i℄ 2 RN : i-th noise vetor:Moreover, Al (2 � l � L) is the amplitude of the l-th interferene, and �bl[i℄ and �sl are respetively thei-th interfering symbol bit and the interfering vetorgenerated by l-th interfering user's parameters suh asassoiated data bits and signature. In the presene ofK users, the number of interferenes L � 1 an rangefrom K � 1 to 2(K � 1), due to relative delays of theK � 1 interfering users [4℄.The problem addressed in this paper is to suppresseÆiently the MAI,PLl=2 Al �bl[i℄�sl in (1), with a linear�lter without amplifying the noise n[i℄ severely.

2.2 Adaptive Projeted Subgradient Method [16{18℄Let C � RN be a nonempty losed onvex set; a setK � RN is said to be onvex provided that 8x;y 2 K,8� 2 (0; 1), �x + (1 � �)y 2 K. Then, the projetionoperator PC : RN ! C maps a vetor x 2 RN to theunique vetor PC(x) 2 C s.t. d(x; C) := kx�PC(x)k =miny2C kx � yk, where kxk := hx;xi1=2, 8x 2 RN(hx;yi := xTy, 8x;y 2 RN , and the supersript Tstands for transposition). Also let �n : RN ! [0;1)be a ontinuous onvex funtion and ��(y) the subdif-ferentialy of � at y; a funtion � : RN ! R is said tobe onvex if �(�x+ (1� �)y) � ��(x) + (1� �)�(y),8x;y 2 RN and 8� 2 (0; 1). Then, the followingsheme asymptotially minimizes (�n)n2N over C.Sheme 1: (Adaptive Projeted SubgradientMethod (APSM) [16{18℄) Generate a sequene(hn)n2N byhn+1 := 8><>: PC �hn � �n �n(hn)k�0n(hn)k2�0n(hn)� ;if �0n(hn) 6= 0;hn; otherwise, (2)where h0 2 RN , �0n(hn) 2 ��n(hn) and �n 2 [0; 2℄ isthe relaxation parameter.Basi properties of Sheme 1 are given in Appendix A.3. Proposed Embedded Constraint AdaptiveAlgorithmsThis setion provides two set-theoreti algorithms foradaptation of a blind MAI suppression �lter hn 2 RN ,where n 2 N denotes the iteration number. All avail-able data for the adaptation are assumed to be thesequene of reeived vetors (r[i℄)i2N and the desireduser's signature s1 (NOTE: In the absene of Inter-Chip Interferene (ICI), the signature oinides withthe spreading ode and may be readily available [10℄).3.1 Set DesignTo avoid the self-nullingyy(i.e., aneling the desireduser's signals), the following onstraint is ommonlyimposed on the �lter (e.g., [6℄):hn 2 Cs := fh 2 RN : hh; s1i = 1g; 8n 2 N: (3)yThe subdi�erential of � at y is the set of all the subgra-dients of � at y; ��(y) := fa 2 RN : hx� y;ai +�(y) ��(x); 8x 2 RN g:yyIn the ase when the amplitude of some interferene isgreater than that of a desired user, the �lter may trak notthe desired user but the interferene. In suh a ase, thedesired user's signal is suppressed. The set Cs an avoidsuh a situation.



YUKAWA et al.: EFFICIENT BLIND MAI SUPPRESSION IN DS/CDMA BY EMBEDDED CONSTRAINT TECHNIQUES 3Atually, hhn; s1i an be any positive onstant, how-ever, for simpliity, we let hhn; s1i = 1. For anyhn 2 Cs, 8i 2 N,hhn; r[i℄i = A1b1[i℄ + LXl=2 Al�bl[i℄ hhn; �sli+ hhn;n[i℄i :(4)For suppressing the MAI without amplifying noiseseverely, the seond and third terms on the right sideof (4) should be redued as muh as possible. Thus,a Minimum Mean-Squared Error (MMSE) �lter is de-�ned as follows [9℄:h� 2 argminh2Cs E �(hh; r[i℄i �A1b1[i℄)2	 ; (5)where Ef�g denotes the expetation; see Appendix Bfor relationship between the MMSE and the MinimumOutput Energy (MOE) optimal �lters. Sine A1 andb1[i℄ in (5) are not available, we use the following esti-mates [7℄:bA1;n+1 := bA1;n +  �jhhn; r[n℄ij � bA1;n� ; 8n 2 N; (6)bb1;n[i℄ := sgn hhn; r[i℄i ; 8n 2 N; (7)where bA1;n ( bA1;0 = 0) and bb1;n[i℄ are respetively esti-mates of the amplitude A1 and the i-th transmitted bitb1[i℄ at iteration number n, and  2 (0; 1℄ is the forget-ting fator; see Remark 3. For simpliity, we de�ne thesignum funtion sgn: R ! f�1; 1g as, if a > 0, sgn a =1, otherwise, sgn a = �1 (8a 2 R). With the estimatesin (6) and (7), the problem is reformulated as �nding apoint inargminh2Cs E��hh; r[i℄i � bA1;n+1bb1;n[i℄�2� : (8)Instead of the expetation in (8), we newly introduethe following stohasti property sets [f. Remark B.1(d)℄:C(n)� [i℄ := �h 2 RN : �hh; r[i℄i � bA1;n+1bb1;n[i℄�2 � �� ;8n 2 N; 8i 2 In := fn; n� 1; � � � ; n� q + 1g; (9)where In is the so-alled ontrol sequene (f. [23℄) withq elements (see Remark 3) and � � 0 is a parameterthat determines the reliability of the set to ontain theMMSE optimal �lter h� in (5). Intuitively, an inreaseof � inates the set C(n)� [i℄, and thus we all � inationparameter (� should be desribed as �n;i beause it anbe designed independently for eah set: in the follow-ing, however, suh subsripts are omitted for notationalsimpliity).Sine Cs is ompletely reliable to ontain h�, ourstrategy is to use Cs as a hard (absolute) onstraint setand fC(n)� [i℄gi2In as a olletion of sets to whih thedistanes should be redued.

3.2 Proposed AlgorithmsLet us derive the proposed algorithms from Sheme 1with the sets in (3) and (9). Given q 2 N n f0g, letf!(n)� g�2In � (0; 1℄ satisfying P�2In !(n)� = 1, 8n 2 N,be the weights. De�ne the ost funtion�n(h) := 8>>>>>>><>>>>>>>:
X�2In !(n)�L(1)n d(hn; C(n)� [�℄ \ Cs)d(h; C(n)� [�℄ \ Cs);if L(1)n := X�2In !(n)� d(hn; C(n)� [�℄ \ Cs) 6= 0;0; otherwise; (10)where d(h; C(n)� [�℄\Cs)�= h� PC(n)� [�℄\Cs(h)�, 8� 2In, is the distane funtion of the variable vetor h 2RN to the set C(n)� [�℄ \ Cs (whih should be redued).When L(1)n 6= 0 (, hn 62 T�2In C(n)� [�℄ \ Cs), theweighting !(n)�L(1)n d(hn; C(n)� [�℄ \ Cs) is given to eah dis-tane funtion, where L(1)n is the normalizing fator; thesets far from hn have large weighting. When L(1)n = 0,we have hn 2 T�2In C(n)� [�℄ \ Cs, hene nothing is leftto do in this ase. A subgradient of �n at hn is given by�0n(hn) = 1L(1)n P�2In !(n)� �hn � PC(n)� [�℄\Cs(hn)� 2��n(hn) if L(1)n 6= 0; for details, see [18, p.607, Ex-ample 3℄.Appliation of C = RN and �n(h) in (10) toSheme 1 yields the following algorithm.Algorithm 1: (Blind Parallel Constrained Pro-jetion Algorithm)Requirements: the ontrol sequene In, the weights!(n)� > 0 s.t.P�2In !(n)� = 1, the signature s1, the pro-jetion matrix Q := I � s1sT1 (I : the identity matrix,NOTE: ks1k = 1), the ination parameter � � 0, thestep size �n 2 [0; 2℄ and the forgetting fator  2 (0; 1℄.Initialization: bA1;0 = 0, h0 = s1 2 CsAlgorithm:1) Estimation of A1 and b1[�℄bA1;n+1= bA1;n +  �jhhn; r[n℄ij � bA1;n�bb1;n[�℄ = sgn hhn; r[�℄i ; � 2 In2) Update of �lterhn+1 = hn+�nM(1)n  X�2In !(n)� PC(n)� [�℄\Cs (hn)� hn!;(11)where, for any h 2 Cs,



4 IEICE TRANS. FUNDAMENTALS, VOL.E88{A, NO.8 AUGUST 2005Table 1 Adaptive Blind Algorithms. PCs(x) = Qx+ s1, 8x 2 RN .Algorithm Adaptation ruleOPM-GP hn+1 = PCs fhn + � (PHn(hn)� hn)g = hn � � hhn;r[n℄ikr[n℄k2 Qr[n℄where Hn := fh : hh; r[n℄i = 0gSAGP bA1;n+1 & bb1;n are omputed by (6) & (7)hn+1 = PCs �hn + � �P (g)(hn)� hn�	,where P (g)(hn) := 8><>: PH(+)n (hn) = hn � hhn;r[n℄i� bA1;n+1kr[n℄k2 r[n℄; if hhn;r[n℄i > 0;PH(�)n (hn) = hn � hhn;r[n℄i+ bA1;n+1kr[n℄k2 r[n℄; otherwise;with H(�)n := fh : hh;r[n℄i = � bA1;n+1gCNLMS bA1;n+1 & bb1;n are omputed by (6) & (7)hn+1 = hn + ��PC(n)0 [n℄\Cs(hn)� hn�B2P bA1;n+1 is omputed by (6)hn+1 = PCs �hn + �n �Pq�1j=0 w(n)j PC(n)j (hn)� hn��where C(n)j := fh : jhh;r[n� j℄ij � bA1;n+1g
PC(n)� [�℄\Cs(h)=8>>>>>>>>><>>>>>>>>>:

h�hh; r[�℄i � bA1;n+1bb1;n[�℄�p�r[�℄TQr[�℄ Qr[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ > p�;h�hh; r[�℄i � bA1;n+1bb1;n[�℄ +p�r[�℄TQr[�℄ Qr[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ < �p�;h; otherwise; (12)M(1)n := 8>>>>><>>>>>:P�2In !(n)� PC(n)� [�℄\Cs (hn)� hn2P�2In !(n)� PC(n)� [�℄\Cs (hn)� hn2 ;if hn =2 T�2In C(n)� [�℄ \ Cs;1; otherwise:NOTE: For all n 2 N, hn 2 Cs holds, sine (i)h0 2 Cs and (ii) hn 2 Cs ) hn+1 2 Cs from (3)and (11). The proof of (12) is given in Appendix C.A weighted average of multiple projetions as in (11)is referred to as parallel projetion [24℄, sine it an beomputed in parallel by using q onurrent proessors.On the other hand, appliation of C = RN and�n(h) := �n(PCs(h)), where�n(h) :=8>>><>>>: X�2In !(n)�L(2)n d(hn; C(n)� [�℄)d(h; C(n)� [�℄);if L(2)n :=P�2In !(n)� d(hn; C(n)� [�℄) 6= 0;0; otherwise;to Sheme 1 yields the following algorithm (for detailsabout the derivation of the algorithm, see [18, p.610,Example 5℄).Algorithm 2: (Blind Constrained Parallel Pro-jetion Algorithm)Requirements & Initialization: the same as Algo-rithm 1

Algorithm:1) Estimation of A1 and b1[�℄: the same as Algorithm 12) Update of �lterhn+1=hn+�nM(2)n P eCs X�2In !(n)� PC(n)� [�℄ (hn)� hn!;(13)where eCs := fh 2 RN : hh; s1i = 0g is a translatedlinear subspae of Cs andP eCs(h) = Qh;
PC(n)� [�℄(h) =8>>>>>>>>><>>>>>>>>>:

h� hh; r[�℄i � bA1;n+1bb1;n[�℄�p�kr[�℄k2 r[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ > p�;h� hh; r[�℄i � bA1;n+1bb1;n[�℄ +p�kr[�℄k2 r[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ < �p�;h; otherwise;M(2)n :=8>>>>>><>>>>>>: P�2In !(n)� PC(n)� [�℄ (hn)� hn2P eCs �P�2In !(n)� PC(n)� [�℄ (hn)� hn�2 ;if P�2In !(n)� PC(n)� [�℄ (hn)� hn =2 eC?s ;1; otherwise:For any linear subspae M � RN , M? � RN isde�ned as M? := fx 2 RN : hx;mi = 0; 8m 2 Mg.Algorithm 2 belongs to the family of Embedded Con-straint Adaptive Projeted Subgradient Method (EC-APSM) [16{18℄. Moreover, Algorithm 1 an be gen-eralized into a new family of embedded onstraint al-gorithms shown in Appendix D.Remark 1: (Computational Complexity)Note that the omputation of Qa = a � s1(sT1 a),8a 2 RN , requires 2N multipliations. Moreover,
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C(n)� [n� 1℄ \ CsFig. 1 A geometri interpretation of embedded onstraintmethods: the proposed algorithms and the CNLMS algo-rithm. The dotted area shows C(n)� [n℄ \ C(n)� [n � 1℄ \ Cs.8� 2 In n fng, \r[�℄TQr[�℄ and Qr[�℄ in Algorithm 1"and \kr[�℄k2 in Algorithm 2" are omputed at the pre-vious iterations. Hene, we see that both Algorithms 1and 2 require (4q + 5)N multipliations at eah itera-tion. Furthermore, note that eah term in the summa-tion in (11) [or (13)℄ an be omputed in parallel (in-dependently). Therefore, with q onurrent proessors,the number of multipliations imposed on eah proes-sor is redued to 9N no matter how many projetionsare used; i.e., the omplexity order imposed on eahproessor is linear. This implies that the proposed al-gorithms are suitable for real-time implementation. Onthe other hand, the RLS-based-MMSE method [8℄ andthe subspae approah [9℄, whih are well-known blindmethods, require O(N2) and (4L+3)N+O(L) multipli-ations, respetively. Moreover, for good performane,the subspae approah needs to detet the exat num-ber of strong interferenes, whih inreases the overallsystem omplexity.Table 1 gives a uni�ed view, with projetion oper-ators, to the following blind algorithms: the normalizedOPM-based gradient projetion (OPM-GP) [6, 7℄, theSAGP [7℄, the blind CNLMS that is based on the ideaof [14℄ ombined with our de�ning sets in (9), and theB2P [15℄. The OPM-GP [7℄ is a normalized version ofthe blind MOE algorithm [6℄; the algorithms are alledrespetively projeted NLMS and projeted LMS in [25℄.It is not hard to see that the CNLMS is a speial aseof Algorithm 1 with q = 1 and � = 0. It should be re-marked that the steady state performane of the B2Pand the SAGP may be di�erent, sine the algorithmsuse di�erent sets as shown in Table 1. The SAGP uti-lizes the so-alled generalized projetion P (g)(hn) (seee.g., [12℄), whih gives a nearest point from hn in thenon-onvex setH(+)n [H(�)n . The generalized projetionis not a strit projetion beause it is not always unique(f. the de�nition of projetion in Se. 2-B). In fat, if
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Fig. 2 A geometri interpretation of non-embedded on-straint methods (the SAGP and the B2P) and the proposedmethods. The dotted area shows C(n)� [n℄ \ C(n)� [n � 1℄.hhn; r[n℄i = 0, there exist two nearest points from hn inH(+)n [H(�)n ; PH(+)n (hn) and PH(�)n (hn). Fortunately, ageometri omparison of the SAGP with the proposedalgorithms is possible (see Remark 2), sine C(n)0 [n℄ o-inides with H(+)n [or H(�)n ℄ when sgnhhn; r[n℄i = 1 (orsgnhhn; r[n℄i = �1), by (7), (9) and Table 1. It is eas-ily seen that C(n)0 used in the B2P is a losed onvexset bounded by the hyperplanes H(+)n and H(�)n usedin the SAGP.Figures 1 and 2 illustrate geometri interpreta-tions of the proposed algorithms ompared with a sim-ple embedded onstraint method (the CNLMS) andnon-embedded onstraint methods (the SAGP and theB2P), respetively. A geometri interpretation of theOPM-GP is also possible; the set Hn is nothing butthe translated subspae of H(+)n [or H(�)n ℄. For visuallarity, however, it is omitted. For the proposed algo-rithm and the B2P, the uniform weights, !(n)� = 1=2(8� = 1; 2), are employed with q = 2 parallel pro-essors. For the B2P, the step size is set to Mn.For the other methods, the step sizes are set to 1.The MMSE optimal �lter h� is assumed to satisfyh� 2 C(n)� [n℄ \ C(n)� [n � 1℄ \ Cs. All algorithms areassumed to have, if neessary, a ommon amplitude es-timation bA1;n+1 and a orret bit estimation bb1;n[n℄. Aremark on geometri omparisons is given below.Remark 2: (Geometri Comparisons)Referring to Fig. 1, we see that the proposed algo-rithms generate loser points to the MMSE optimal�lter h� than the CNLMS due to its parallel stru-ture; i.e., the proposed algorithms utilize multiple datasimultaneously. As also seen in the �gure, Algorithm1 takes an averaged diretion of exat projetions ontofC(n)� [�℄\Csg�2In, while Algorithm 2 takes an averageddiretion of relaxed projetions. The \relaxation" de-
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Fig. 3 SINR urves of Algorithm 1 with di�erent valuesof ination parameter � under SNR=15 dB.pends on the angle between s1 (the normal vetor ofthe hyperplane Cs) and r[�℄ (the one of the boundaryhyperplanes of C(n)� [�℄).Referring to Fig. 2, we see that the B2P gener-ates a loser point to h� than the SAGP due to itsparallel struture. The proposed algorithms generateeven loser points than the B2P due to its embeddedonstraint struture in addition to its parallel stru-ture. We also see that the SAGP and the B2P areonstruted by two steps; the seond step PCs(�) in Ta-ble 1 is to enfore the �lter in the onstraint set. On theother hand, the CNLMS and the proposed algorithmsupdate the �lter along the onstraint set, and henethey are onstruted by one step.Finally, from our observation, a simple strategy forthe design of  and q [f. (6) and (9)℄ is given below.Remark 3: (On Design of  and q)From Remark B.1 (d) in Appendix B, bA1;n+1 � A1should be valid for good steady state performane,whih an be obtained with small , although it mayderease the speed of onvergene [7℄. From our experi-ene, q leads to good performane when Ta::=qTb > 0:1,where Ta:: and Tb denote the period when the hannelsare almost onstant and the bit period, respetively.To exemplify the disussion in Remark 2, wepresent numerial omparisons in the following setion.4. Simulation ResultsThis setion provides the results of some omputersimulations, all of whih are performed under the fol-lowing onditions. The number of interfering users is(K � 1) = 5, and all users have amplitude 10 timesgreater than the amplitude of the desired signal A1 = 1.Signals are modulated by 31-length Gold sequenes
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steady states will be simultaneously realized by assign-ing \� = 0" at the beginning and \an appropriate valueof �" after onvergene; this suggestion is onsistentwith the results in [26℄. To verify this suggestion, ad-ditional experiments are performed below.4.2 Proposed Methods with Change of Ination Pa-rameter & Comparison with Other Blind MethodsWe assign 0 at the beginning and 0:7 after iterationnumber 500 to the ination parameter �, and the otherparameters are the same as employed in Fig. 3. Fig-ure 4 ompares the SINR performane, under SNR=15 dB, of the proposed algorithms with the ones pre-sented in Table 1 (For omparisons with another ma-jor blind method, the Constant Modulus with Ampli-tude Estimation (CMAE) [11℄, see [15℄). For Algo-rithm 2 and the B2P, the same parameters as Algo-rithm 1 are employed (For the B2P, the step size is setto �n = 0:2Mn). For the OPM-GP, the SAGP andthe CNLMS, step sizes are set to 0.2 for a fair om-parison. As expeted from Remark 2, we observe thatthe proposed algorithms outperform all other methodsin terms of speed of onvergene, while attaining exel-lent SINR in the steady state. Moreover, the additionalomputational omplexity imposed by the proposed al-gorithms an be somehow alleviated by using proessorsin parallel (see Remark 1). As suggested in the end ofSe. 4-A, we observe that the steady state performaneof Algorithm 1 is improved by around 1 dB, although,judged from Fig. 3, the hoie of � = 0:7 may not bethe best.To highlight the steady state performane, the BitError Rate (BER) performane is depited in Figs. 5and 6 over SNR ranging from 5 to 15 dB. To apturethe steady state performane in a fair manner, 6000bits are transmitted at eah realization and the last1000 bits for 100 realizations are used to alulate theBER. For a omparison, the line by the optimal �lterh� is depited, whih is omputed by (B.1) and Rr =A21s1sT1 +PLl=2 A2l �sl�sTl + �2nI , with full information,based on the independene assumption.Figure 5 ompares the BER of the proposed algo-rithms with \hanging the ination parameter � as inFig. 4" and \�xing � to 0". We see that the BER per-formane is signi�antly improved due to the hangeof �. In Fig. 6, the BER performane of the proposedalgorithms with hanging � is ompared with the blindmethods employed in Fig. 4. Referring to Figs. 4 and 6,we observe that the proposed algorithms ahieve muhfaster onvergene in SINR than the SAGP and theCNLMS as well as almost the same BER performaneas the optimal �lter. Also we observe that the pro-posed algorithms drastially outperform the OPM-GPand the B2P in BER. Reviewing Fig. 3 and onsider-ing that the CNLMS is a speial ase of Algorithm 1with q = 1 (see (11) and Table 1), another suggestion



8 IEICE TRANS. FUNDAMENTALS, VOL.E88{A, NO.8 AUGUST 2005

0 500 1000 1500 2000
−15

−10

−5

0

5

10

15

Iteration number

O
ut

pu
t S

IN
R

 (
dB

)

SAGP

CNLMS

OPM−GP

Proposed 1

Proposed 2

B2P

Fig. 7 \Proposed algorithms with q swithed to 1 afteronvergene" versus other blind methods in SINR underSNR=15 dB.is brought that the steady state performane of Algo-rithm 1 will also be improved by swithing q to 1 afteronvergene.To verify this seond suggestion, further experi-ments for the proposed algorithms are performed underSNR = 15 dB, where the number of parallel projetionsis set to q = 16 at the beginning and it is swithed to1 at iteration number 500 and the ination parame-ter is �xed to � = 0 throughout the simulations. Theother parameters are the same as in Fig. 4. Figure 7ompares the SINR performane of the proposed al-gorithms with the blind methods used in Fig. 4. Weobserve that the performane in the steady state is ef-�iently improved by dereasing the number of parallelprojetions after onvergene, as expeted by the se-ond suggestion. This swithing strategy is easily real-ized in hardware implementation.4.3 Comparison with Non-Blind MethodsFinally, Fig. 8 ompares the proposed algorithms, un-der SNR=15 dB, with the non-blind (semi-blind) al-gorithms; Generalized Projetion (GP) algorithm [7℄with known amplitude of desired user, the NormalizedLeast Mean Square (NLMS) and the Reursive LeastSquares (RLS) algorithms [27℄ with training sequenes.For the non-blind methods, parameters are adjusted toahieve the fastest notieable rate of onvergene. Forthe proposed algorithms and the B2P, the employedparameters are the same as in Fig. 4. We observe thatthe proposed algorithms ahieve rather faster onver-gene than the non-blind NLMS, and exhibit ompara-ble speed of onvergene to the non-blind RLS. Theseremarkable improvements are aomplished by the em-bedded onstraint and parallel strutures.

0 500 1000 1500 2000
−15

−10

−5

0

5

10

15

Iteration number

O
ut

pu
t S

IN
R

 (
dB

)

B2P

Proposed 1

RLS with training sequence
NLMS with training sequence

Proposed 2

GP (known amplitude)
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YUKAWA et al.: EFFICIENT BLIND MAI SUPPRESSION IN DS/CDMA BY EMBEDDED CONSTRAINT TECHNIQUES 9(a) (Monotoniity)hn+1 � h�(n) � hn � h�(n) ; 8n 2 N;8h�(n) 2 
n := fh 2 C : �n(h) = infx2C �n(x)g:(b) (Asymptoti minimization)Suppose (�0n(hn))n2N is bounded and 9N0 s.t. (i)infx2C �n(x) = 0, 8n � N0 and (ii) 
 :=Tn�N0 
n 6= ;. Then, we havelimn!1�n(hn) = 0:Note that �0n used to derive Algorithm 1 (or Algo-rithm 2) in Se. 3 is automatially bounded [17℄.Appendix B: MMSE and MOE DetetorsLet us show a simple observation.Observation 1: Suppose (I) the auto-orrelation ma-trix Rr := Efr[i℄r[i℄T g is full rank () h� is unique),and (II) yrb := Efr[i℄b1[i℄g = �s1, 9� 2 R. Then, forany given � 2 R,h�= R�1r s1sT1R�1r s1 =argminh2Cs E �(hh; r[i℄i � �b1[i℄)2	| {z }=: h�� : (B.1)Sketh of proof:By the ondition (I) and \Lagrangian multiplier"methodology (e.g., [31℄), we an easily obtainh�� = R�1r s1sT1R�1r s1 + � �R�1r yrb � sT1R�1r yrbsT1R�1r s1 R�1r s1� ;and, by imposing the ondition (II), we readily verifyh�� = h� = R�1r s1sT1R�1r s1 : 2Remark B.1:(a) Without (I), h�� is not neessarily unique.(b) The ondition (II) holds under slow time-varyingfading situations with the following assumption:Efb1[i℄bl[i℄g = 0, 8l 2 f2; 3; � � � ; Lg, andEfb1[i℄n[i℄g = 0.() The �lters h�0 and h�A1(= h�) are alled the MOEdetetor and the (onstrained) MMSE detetor, re-spetively. Observation 1 shows that the MMSEand the MOE detetors oinide under (I) and (II).(d) By h� = h�� (8� 2 R) under (I) and (II), a naturalquestion would be: Does the seteC(n)� [i℄ := �h 2 RN : �hh; r[i℄i � �bb1;n[i℄�2 � ��

with an arbitrarily hosen � ontain the opti-mal �lter h�? If \yes", we ould get an opti-misti onlusion that the amplitude estimationbA1;n+1 is not neessary. Unfortunately, however,the answer is \no", of whih the reason is as fol-lows. By (4), hh; r[i℄i � �bb1;n[i℄ has the termA1b1[i℄� �bb1;n[i℄ in addition to the terms of MAIand noise. Hene, bounding �hh; r[i℄i � �bb1;n[i℄�2by small � does not neessarily suppress MAI suf-�iently (without amplifying noise severely) whenjA1 � �j � 0, whih implies, from the ontext be-tween (4) and (5), that � should be lose to A1 inorder to ensure h� 2 eC(n)� [i℄. Therefore, high a-uray of the estimation of A1 is essential for goodsteady state performane.Appendix C: Proof of Equation (12)Suppose h 2 Cs. For notational simpliity, in this se-tion, we represent the stohasti property set C(n)� [�℄ asC [see (9)℄. The set C is a losed onvex set boundedby two hyperplanesH+ := fx 2 RN : hx; r[�℄i � bA1;n+1bb1;n[�℄ = p�g;H� := fx 2 RN : hx; r[�℄i � bA1;n+1bb1;n[�℄ = �p�g:(a) Assume �p� � hh; r[�℄i � bA1;n+1bb1;n[�℄ � p� (,h 2 C). In this ase,PC\Cs(h) = h:In the other ases, PC\Cs(h) = PHsgn\Cs(h),where Hsgn (sgn: + or �) is the nearest hyper-plane, from h, of the two H+ and H�.(b) Assume hh; r[�℄i � bA1;n+1bb1;n[�℄ > p� () h =2 C).In this ase, the nearest hyperplane is obviouslyH+, and hene PC\Cs(h) = PH+\Cs(h). SineH+ \ Cs = fx : xT [s1; r[�℄℄ = h1; bA1;n+1bb1;n[�℄ +p�ig;we have (f. e.g., [32, p.65 Theorem 2℄)PH+\Cs(h) = h�G(GTG)�1(GTh� v);whereG := [r[�℄; s1℄ and v := � bA1;n+1bb1;n[�℄ +p�1 �.Using hs1;hi = 1, ks1k = 1 and I�s1sT1 = Q (seeRequirements in Algorithm 1), we obtainPC\Cs(h) =h�hh; r[�℄i � bA1;n+1bb1;n[�℄�p�r[�℄TQr[�℄ Qr[�℄:() Assume hh; r[�℄i� bA1;n+1bb1;n[�℄ < �p� () h =2 C).In this ase, the nearest hyperplane is obviouslyH�, and hene PC\Cs(h) = PH�\Cs(h). In analogywith (b), we an verify



10 IEICE TRANS. FUNDAMENTALS, VOL.E88{A, NO.8 AUGUST 2005PC\Cs(h) =h�hh; r[�℄i � bA1;n+1bb1;n[�℄ +p�r[�℄TQr[�℄ Qr[�℄;whih ompletes the proof. 2Appendix D: New Family of EmbeddedConstraint AlgorithmsLet us onsider the following problem.Problem 1: Suppose q sets fS�(n)gq�=1 � RN are de-�ned for eah n 2 N. Find a sequene (hn)n2N �RN that asymptotially minimizes the distane to(fS�(n)gq�=1)n2N over a linear varietyy V .Setting V = Cs and S�(n) = C(n)� [�℄, 8n 2 N,8� 2 In(:= f1; 2; � � � ; qg), Problem 1 is redued to theone in Se. 3. Conversely, using V and S�(n) insteadof Cs and C(n)� [�℄, 8n 2 N, 8� 2 In, in Algorithm 1,respetively, we obtain the following sheme to solveProblem 1.Sheme 2: (Adaptive Parallel Constrained Pro-jetion [A-PCP℄ Method) Generate a sequene(hn)n2N byhn+1 = hn + �nMn qX�=1 !(n)� PS�(n)\V (hn)� hn! ;8n 2 N, where h0 2 V , �n 2 [0; 2℄ andMn := 8>>>><>>>>:Pq�=1 !(n)� PS�(n)\V (hn)� hn2Pq�=1 !(n)� PS�(n)\V (hn)� hn2 ;if hn =2 Tq�=1 S�(n) \ V ;1; otherwise:If, in Sheme 2, the projetion onto S�(n) \ Vis omputationally expensive, an outer approximatinglosed half-spae an be used instead of S�(n) as in theadaptive parallel subgradient projetion algorithm (see[33℄). When S�(n) (8n 2 N) is a hyperplane, the hoieof q = 1 in Sheme 2 derives the CNLMS algorithm[14℄.AknowledgementThe authors would like to express their deep gratitudeto Prof. K. Sakaniwa of Tokyo Institute of Tehnologyfor fruitful disussions. This work was supported inpart by JSPS grants-in-Aid (178440).yGiven v 2 RN and a losed subspae M � RN , thetranslation of M by v de�nes the linear variety V := v +M := fv +m : m 2 Mg. Suppose dim(M?) = 1, whereM? = fx 2 RN : hx;mi = 0; 8m 2 Mg. Then, V isalled hyperplane, whih an be expressed as V = fx 2RN : ha;xi = g for some (0 6=)a 2 RN and  2 R.
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