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), Regular MemberSUMMARY This paper presents two novel blind set-theoreti
 adaptive �ltering algorithms for suppressing \MultipleA

ess Interferen
e (MAI)", whi
h is one of the 
entral burdensin DS/CDMA systems. We naturally formulate the problem ofMAI suppression as an asymptoti
 minimization of a sequen
eof 
ost fun
tions under some linear 
onstraint de�ned by the de-sired user's signature. The proposed algorithms embed the 
on-straint into the dire
tion of update, and thus the adaptive �ltermoves toward the optimal �lter without stepping away from the
onstraint set. In addition, using parallel pro
essors, the pro-posed algorithms attain ex
ellent performan
e with linear 
om-putational 
omplexity. Geometri
 interpretation 
lari�es an ad-vantage of the proposed methods over existing methods. Simu-lation results demonstrate that the proposed algorithms a
hieve(i) mu
h higher speed of 
onvergen
e with rather better bit er-ror rate performan
e than other blind methods and (ii) mu
hhigher speed of 
onvergen
e than the non-blind NLMS algorithm(indeed, the speed of 
onvergen
e of the proposed algorithms is
omparable to the non-blind RLS algorithm).key words: blind MAI suppression, DS/CDMA system, linearly
onstrained algorithms, adaptive proje
ted subgradient method1. Introdu
tionThe goal of this paper is to develop a blind Multiple A
-
ess Interferen
e (MAI) suppressing algorithm, being\eÆ
ient" in the sense of (i) low 
omputational 
om-plexity and (ii) high speed of 
onvergen
e, for Dire
tSequen
e Code-Division Multiple-A

ess (DS/CDMA)systems.One of the noti
eable advantages of CDMA sys-tems is that users 
an share time and frequen
y by ex-ploiting distin
t spreading 
odes, or, in other words,users 
an transmit their information symbols at thesame time and frequen
y. CDMA re
eivers, on theother hand, are usually a�e
ted by interferen
e origi-nated from transmitted symbols of other users. This is
ommonly referred to as MAI and it is known to dete-riorate the overall 
apa
ity. A great deal of e�ort hasbeen devoted to MAI suppression [1{11℄.To realize high throughput systems, blind methodsManus
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for MAI suppression, whi
h do not require a trainingsequen
e (or pilot signals), have been parti
ularly ingreat demand [6{11℄. In 1995, Honig et. al. proposed ablind adaptive multiuser dete
tion method [6℄, in whi
hthe problem is formulated as a 
onstrained optimizationwith a linear 
onstraint de�ned by the desired user'ssignature. In 1997, Park and Doherty proposed a sim-ple set-theoreti
 blind method 
alled Spa
e AlternatingGeneralized Proje
tion (SAGP) [7℄, whi
h utilizes gen-eralized proje
tions onto non-
onvex sets (see Remark2 and [12℄). The SAGP exhibits better performan
e inthe steady state at the expense of slower 
onvergen
erate than the method in [6℄. In [13℄, it is reported thatfast algorithms are ne
essary to keep good performan
eespe
ially in wireless 
ommuni
ations.In 1998, Apolin�ario Jr. et. al. proposed the Con-strained Normalized Least Mean Square (CNLMS) al-gorithm [14℄, whi
h embeds the 
onstraint used in [6℄into the dire
tion of update, providing fast 
onvergen
e.Unfortunately, the CNLMS does not yet a
hieve suÆ-
ient speed of 
onvergen
e be
ause it takes just onedatum into a

ount at ea
h iteration. In 2004, on theother hand, a fast blind MAI suppression method wasproposed [15℄, whi
h we 
all Blind Parallel Proje
tion(B2P) algorithm. The B2P developed the idea of theSAGP by using a 
ertain parallel stru
ture and 
onvex-i�
ation, leading to ex
ellent performan
e. The �lterre
ursion (update) of the B2P is 
onstru
ted by twosteps at ea
h iteration (
f. Remark 2): (i) shift the �lterin des
ent dire
tions of 
ost fun
tions and (ii) enfor
eit in the 
onstraint set.This paper presents two embedded 
onstraint blindalgorithms for an adaptive MAI suppression �lter. Em-bedded 
onstraint and parallel stru
ture are the keys torealize fast 
onvergen
e with linear order 
omplexity(see Remarks 1 and 2). The proposed algorithms de-velop the idea of the CNLMS for a

eleration of 
onver-gen
e by taking into a

ount more than one datum withseveral parallel pro
essors at ea
h iteration. A
tually,the algorithms are derived from a set-theoreti
 adap-tive �ltering s
heme named Adaptive Proje
ted Subgra-dient Method (APSM) [16{18℄, whi
h has been su

ess-fully applied to the stereophoni
 a
ousti
 e
ho 
an
ella-tion problem [19, 20℄. Roughly speaking, the algorithmsminimize asymptoti
ally a sequen
e of 
ost fun
tionsthat are de�ned by the re
eived data at every sampling
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h iteration is 
onstru
ted by two stages asfollows. The �rst stage of the algorithms estimates theamplitude of the transmitted signal (as in [7℄) and thetransmitted bits. By using these estimates and the 
on-straint used in [6℄, 
losed 
onvex sets 
alled sto
hasti
property sets [see (9) in Se
. 3℄ are newly designed and,based on the distan
es to these sets, a reasonable 
ostfun
tion is de�ned. The se
ond stage updates the MAIsuppression �lter in a des
ent dire
tion of the 
ost fun
-tion. The proposed algorithms have no need to enfor
ethe �lter in the 
onstraint set unlike the SAGP or theB2P, sin
e the 
onstraint is embedded into the dire
tionof update; i.e., the �lter does not step away from the
onstraint set. Geometri
 interpretation 
lari�es an ad-vantage of the proposed algorithms over the CNLMS,the SAGP and the B2P algorithms (see Remark 2).Simulation results exemplify dramati
al improvementsexpe
ted by the geometri
 interpretation.Preliminary versions of this paper are presented in[21, 22℄.2. Ba
kground2.1 System ModelA Binary Phase-Shift Keying (BPSK) short-
odeDS/CDMA system is brie
y summarized below. Thesystem model 
onsidered in this paper is exa
tly thesame as the one presented in [7, 11, 15℄. Without lossof generality, assume that the desired user's signatures1 satis�es ks1k = 1 as in [7℄. The re
eived data pro
ess(r[i℄)i2N � RN (N : the length of signature) isr[i℄ = A1b1[i℄s1 + LXl=2 Al�bl[i℄�sl + n[i℄; 8i 2 N; (1)whereA1 > 0 : amplitude of the 1-st (desired) userb1[i℄ 2 f�1; 1g : i-th transmitted bit of the desired users1 2 �� 1pN ; 1pN�N : signature of the desired usern[i℄ 2 RN : i-th noise ve
tor:Moreover, Al (2 � l � L) is the amplitude of the l-th interferen
e, and �bl[i℄ and �sl are respe
tively thei-th interfering symbol bit and the interfering ve
torgenerated by l-th interfering user's parameters su
h asasso
iated data bits and signature. In the presen
e ofK users, the number of interferen
es L � 1 
an rangefrom K � 1 to 2(K � 1), due to relative delays of theK � 1 interfering users [4℄.The problem addressed in this paper is to suppresseÆ
iently the MAI,PLl=2 Al �bl[i℄�sl in (1), with a linear�lter without amplifying the noise n[i℄ severely.

2.2 Adaptive Proje
ted Subgradient Method [16{18℄Let C � RN be a nonempty 
losed 
onvex set; a setK � RN is said to be 
onvex provided that 8x;y 2 K,8� 2 (0; 1), �x + (1 � �)y 2 K. Then, the proje
tionoperator PC : RN ! C maps a ve
tor x 2 RN to theunique ve
tor PC(x) 2 C s.t. d(x; C) := kx�PC(x)k =miny2C kx � yk, where kxk := hx;xi1=2, 8x 2 RN(hx;yi := xTy, 8x;y 2 RN , and the supers
ript Tstands for transposition). Also let �n : RN ! [0;1)be a 
ontinuous 
onvex fun
tion and ��(y) the subdif-ferentialy of � at y; a fun
tion � : RN ! R is said tobe 
onvex if �(�x+ (1� �)y) � ��(x) + (1� �)�(y),8x;y 2 RN and 8� 2 (0; 1). Then, the followings
heme asymptoti
ally minimizes (�n)n2N over C.S
heme 1: (Adaptive Proje
ted SubgradientMethod (APSM) [16{18℄) Generate a sequen
e(hn)n2N byhn+1 := 8><>: PC �hn � �n �n(hn)k�0n(hn)k2�0n(hn)� ;if �0n(hn) 6= 0;hn; otherwise, (2)where h0 2 RN , �0n(hn) 2 ��n(hn) and �n 2 [0; 2℄ isthe relaxation parameter.Basi
 properties of S
heme 1 are given in Appendix A.3. Proposed Embedded Constraint AdaptiveAlgorithmsThis se
tion provides two set-theoreti
 algorithms foradaptation of a blind MAI suppression �lter hn 2 RN ,where n 2 N denotes the iteration number. All avail-able data for the adaptation are assumed to be thesequen
e of re
eived ve
tors (r[i℄)i2N and the desireduser's signature s1 (NOTE: In the absen
e of Inter-Chip Interferen
e (ICI), the signature 
oin
ides withthe spreading 
ode and may be readily available [10℄).3.1 Set DesignTo avoid the self-nullingyy(i.e., 
an
eling the desireduser's signals), the following 
onstraint is 
ommonlyimposed on the �lter (e.g., [6℄):hn 2 Cs := fh 2 RN : hh; s1i = 1g; 8n 2 N: (3)yThe subdi�erential of � at y is the set of all the subgra-dients of � at y; ��(y) := fa 2 RN : hx� y;ai +�(y) ��(x); 8x 2 RN g:yyIn the 
ase when the amplitude of some interferen
e isgreater than that of a desired user, the �lter may tra
k notthe desired user but the interferen
e. In su
h a 
ase, thedesired user's signal is suppressed. The set Cs 
an avoidsu
h a situation.
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tually, hhn; s1i 
an be any positive 
onstant, how-ever, for simpli
ity, we let hhn; s1i = 1. For anyhn 2 Cs, 8i 2 N,hhn; r[i℄i = A1b1[i℄ + LXl=2 Al�bl[i℄ hhn; �sli+ hhn;n[i℄i :(4)For suppressing the MAI without amplifying noiseseverely, the se
ond and third terms on the right sideof (4) should be redu
ed as mu
h as possible. Thus,a Minimum Mean-Squared Error (MMSE) �lter is de-�ned as follows [9℄:h� 2 argminh2Cs E �(hh; r[i℄i �A1b1[i℄)2	 ; (5)where Ef�g denotes the expe
tation; see Appendix Bfor relationship between the MMSE and the MinimumOutput Energy (MOE) optimal �lters. Sin
e A1 andb1[i℄ in (5) are not available, we use the following esti-mates [7℄:bA1;n+1 := bA1;n + 
 �jhhn; r[n℄ij � bA1;n� ; 8n 2 N; (6)bb1;n[i℄ := sgn hhn; r[i℄i ; 8n 2 N; (7)where bA1;n ( bA1;0 = 0) and bb1;n[i℄ are respe
tively esti-mates of the amplitude A1 and the i-th transmitted bitb1[i℄ at iteration number n, and 
 2 (0; 1℄ is the forget-ting fa
tor; see Remark 3. For simpli
ity, we de�ne thesignum fun
tion sgn: R ! f�1; 1g as, if a > 0, sgn a =1, otherwise, sgn a = �1 (8a 2 R). With the estimatesin (6) and (7), the problem is reformulated as �nding apoint inargminh2Cs E��hh; r[i℄i � bA1;n+1bb1;n[i℄�2� : (8)Instead of the expe
tation in (8), we newly introdu
ethe following sto
hasti
 property sets [
f. Remark B.1(d)℄:C(n)� [i℄ := �h 2 RN : �hh; r[i℄i � bA1;n+1bb1;n[i℄�2 � �� ;8n 2 N; 8i 2 In := fn; n� 1; � � � ; n� q + 1g; (9)where In is the so-
alled 
ontrol sequen
e (
f. [23℄) withq elements (see Remark 3) and � � 0 is a parameterthat determines the reliability of the set to 
ontain theMMSE optimal �lter h� in (5). Intuitively, an in
reaseof � in
ates the set C(n)� [i℄, and thus we 
all � in
ationparameter (� should be des
ribed as �n;i be
ause it 
anbe designed independently for ea
h set: in the follow-ing, however, su
h subs
ripts are omitted for notationalsimpli
ity).Sin
e Cs is 
ompletely reliable to 
ontain h�, ourstrategy is to use Cs as a hard (absolute) 
onstraint setand fC(n)� [i℄gi2In as a 
olle
tion of sets to whi
h thedistan
es should be redu
ed.

3.2 Proposed AlgorithmsLet us derive the proposed algorithms from S
heme 1with the sets in (3) and (9). Given q 2 N n f0g, letf!(n)� g�2In � (0; 1℄ satisfying P�2In !(n)� = 1, 8n 2 N,be the weights. De�ne the 
ost fun
tion�n(h) := 8>>>>>>><>>>>>>>:
X�2In !(n)�L(1)n d(hn; C(n)� [�℄ \ Cs)d(h; C(n)� [�℄ \ Cs);if L(1)n := X�2In !(n)� d(hn; C(n)� [�℄ \ Cs) 6= 0;0; otherwise; (10)where d(h; C(n)� [�℄\Cs)�= 


h� PC(n)� [�℄\Cs(h)


�, 8� 2In, is the distan
e fun
tion of the variable ve
tor h 2RN to the set C(n)� [�℄ \ Cs (whi
h should be redu
ed).When L(1)n 6= 0 (, hn 62 T�2In C(n)� [�℄ \ Cs), theweighting !(n)�L(1)n d(hn; C(n)� [�℄ \ Cs) is given to ea
h dis-tan
e fun
tion, where L(1)n is the normalizing fa
tor; thesets far from hn have large weighting. When L(1)n = 0,we have hn 2 T�2In C(n)� [�℄ \ Cs, hen
e nothing is leftto do in this 
ase. A subgradient of �n at hn is given by�0n(hn) = 1L(1)n P�2In !(n)� �hn � PC(n)� [�℄\Cs(hn)� 2��n(hn) if L(1)n 6= 0; for details, see [18, p.607, Ex-ample 3℄.Appli
ation of C = RN and �n(h) in (10) toS
heme 1 yields the following algorithm.Algorithm 1: (Blind Parallel Constrained Pro-je
tion Algorithm)Requirements: the 
ontrol sequen
e In, the weights!(n)� > 0 s.t.P�2In !(n)� = 1, the signature s1, the pro-je
tion matrix Q := I � s1sT1 (I : the identity matrix,NOTE: ks1k = 1), the in
ation parameter � � 0, thestep size �n 2 [0; 2℄ and the forgetting fa
tor 
 2 (0; 1℄.Initialization: bA1;0 = 0, h0 = s1 2 CsAlgorithm:1) Estimation of A1 and b1[�℄bA1;n+1= bA1;n + 
 �jhhn; r[n℄ij � bA1;n�bb1;n[�℄ = sgn hhn; r[�℄i ; � 2 In2) Update of �lterhn+1 = hn+�nM(1)n  X�2In !(n)� PC(n)� [�℄\Cs (hn)� hn!;(11)where, for any h 2 Cs,



4 IEICE TRANS. FUNDAMENTALS, VOL.E88{A, NO.8 AUGUST 2005Table 1 Adaptive Blind Algorithms. PCs(x) = Qx+ s1, 8x 2 RN .Algorithm Adaptation ruleOPM-GP hn+1 = PCs fhn + � (PHn(hn)� hn)g = hn � � hhn;r[n℄ikr[n℄k2 Qr[n℄where Hn := fh : hh; r[n℄i = 0gSAGP bA1;n+1 & bb1;n are 
omputed by (6) & (7)hn+1 = PCs �hn + � �P (g)(hn)� hn�	,where P (g)(hn) := 8><>: PH(+)n (hn) = hn � hhn;r[n℄i� bA1;n+1kr[n℄k2 r[n℄; if hhn;r[n℄i > 0;PH(�)n (hn) = hn � hhn;r[n℄i+ bA1;n+1kr[n℄k2 r[n℄; otherwise;with H(�)n := fh : hh;r[n℄i = � bA1;n+1gCNLMS bA1;n+1 & bb1;n are 
omputed by (6) & (7)hn+1 = hn + ��PC(n)0 [n℄\Cs(hn)� hn�B2P bA1;n+1 is 
omputed by (6)hn+1 = PCs �hn + �n �Pq�1j=0 w(n)j PC(n)j (hn)� hn��where C(n)j := fh : jhh;r[n� j℄ij � bA1;n+1g
PC(n)� [�℄\Cs(h)=8>>>>>>>>><>>>>>>>>>:

h�hh; r[�℄i � bA1;n+1bb1;n[�℄�p�r[�℄TQr[�℄ Qr[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ > p�;h�hh; r[�℄i � bA1;n+1bb1;n[�℄ +p�r[�℄TQr[�℄ Qr[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ < �p�;h; otherwise; (12)M(1)n := 8>>>>><>>>>>:P�2In !(n)� 


PC(n)� [�℄\Cs (hn)� hn


2


P�2In !(n)� PC(n)� [�℄\Cs (hn)� hn


2 ;if hn =2 T�2In C(n)� [�℄ \ Cs;1; otherwise:NOTE: For all n 2 N, hn 2 Cs holds, sin
e (i)h0 2 Cs and (ii) hn 2 Cs ) hn+1 2 Cs from (3)and (11). The proof of (12) is given in Appendix C.A weighted average of multiple proje
tions as in (11)is referred to as parallel proje
tion [24℄, sin
e it 
an be
omputed in parallel by using q 
on
urrent pro
essors.On the other hand, appli
ation of C = RN and�n(h) := �n(PCs(h)), where�n(h) :=8>>><>>>: X�2In !(n)�L(2)n d(hn; C(n)� [�℄)d(h; C(n)� [�℄);if L(2)n :=P�2In !(n)� d(hn; C(n)� [�℄) 6= 0;0; otherwise;to S
heme 1 yields the following algorithm (for detailsabout the derivation of the algorithm, see [18, p.610,Example 5℄).Algorithm 2: (Blind Constrained Parallel Pro-je
tion Algorithm)Requirements & Initialization: the same as Algo-rithm 1

Algorithm:1) Estimation of A1 and b1[�℄: the same as Algorithm 12) Update of �lterhn+1=hn+�nM(2)n P eCs X�2In !(n)� PC(n)� [�℄ (hn)� hn!;(13)where eCs := fh 2 RN : hh; s1i = 0g is a translatedlinear subspa
e of Cs andP eCs(h) = Qh;
PC(n)� [�℄(h) =8>>>>>>>>><>>>>>>>>>:

h� hh; r[�℄i � bA1;n+1bb1;n[�℄�p�kr[�℄k2 r[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ > p�;h� hh; r[�℄i � bA1;n+1bb1;n[�℄ +p�kr[�℄k2 r[�℄;if hh; r[�℄i � bA1;n+1bb1;n[�℄ < �p�;h; otherwise;M(2)n :=8>>>>>><>>>>>>: P�2In !(n)� 


PC(n)� [�℄ (hn)� hn


2


P eCs �P�2In !(n)� PC(n)� [�℄ (hn)� hn�


2 ;if P�2In !(n)� PC(n)� [�℄ (hn)� hn =2 eC?s ;1; otherwise:For any linear subspa
e M � RN , M? � RN isde�ned as M? := fx 2 RN : hx;mi = 0; 8m 2 Mg.Algorithm 2 belongs to the family of Embedded Con-straint Adaptive Proje
ted Subgradient Method (EC-APSM) [16{18℄. Moreover, Algorithm 1 
an be gen-eralized into a new family of embedded 
onstraint al-gorithms shown in Appendix D.Remark 1: (Computational Complexity)Note that the 
omputation of Qa = a � s1(sT1 a),8a 2 RN , requires 2N multipli
ations. Moreover,
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CNLMS: h(3)n+1Algorithm 1: h(1)n+1Algorithm 2: h(2)n+1hn
h(1)n+1h(2)n+1h(3)n+1 h� CsRN

C(n)� [n℄\ Cs
C(n)0 [n℄\ Cs

C(n)� [n� 1℄ \ CsFig. 1 A geometri
 interpretation of embedded 
onstraintmethods: the proposed algorithms and the CNLMS algo-rithm. The dotted area shows C(n)� [n℄ \ C(n)� [n � 1℄ \ Cs.8� 2 In n fng, \r[�℄TQr[�℄ and Qr[�℄ in Algorithm 1"and \kr[�℄k2 in Algorithm 2" are 
omputed at the pre-vious iterations. Hen
e, we see that both Algorithms 1and 2 require (4q + 5)N multipli
ations at ea
h itera-tion. Furthermore, note that ea
h term in the summa-tion in (11) [or (13)℄ 
an be 
omputed in parallel (in-dependently). Therefore, with q 
on
urrent pro
essors,the number of multipli
ations imposed on ea
h pro
es-sor is redu
ed to 9N no matter how many proje
tionsare used; i.e., the 
omplexity order imposed on ea
hpro
essor is linear. This implies that the proposed al-gorithms are suitable for real-time implementation. Onthe other hand, the RLS-based-MMSE method [8℄ andthe subspa
e approa
h [9℄, whi
h are well-known blindmethods, require O(N2) and (4L+3)N+O(L) multipli-
ations, respe
tively. Moreover, for good performan
e,the subspa
e approa
h needs to dete
t the exa
t num-ber of strong interferen
es, whi
h in
reases the overallsystem 
omplexity.Table 1 gives a uni�ed view, with proje
tion oper-ators, to the following blind algorithms: the normalizedOPM-based gradient proje
tion (OPM-GP) [6, 7℄, theSAGP [7℄, the blind CNLMS that is based on the ideaof [14℄ 
ombined with our de�ning sets in (9), and theB2P [15℄. The OPM-GP [7℄ is a normalized version ofthe blind MOE algorithm [6℄; the algorithms are 
alledrespe
tively proje
ted NLMS and proje
ted LMS in [25℄.It is not hard to see that the CNLMS is a spe
ial 
aseof Algorithm 1 with q = 1 and � = 0. It should be re-marked that the steady state performan
e of the B2Pand the SAGP may be di�erent, sin
e the algorithmsuse di�erent sets as shown in Table 1. The SAGP uti-lizes the so-
alled generalized proje
tion P (g)(hn) (seee.g., [12℄), whi
h gives a nearest point from hn in thenon-
onvex setH(+)n [H(�)n . The generalized proje
tionis not a stri
t proje
tion be
ause it is not always unique(
f. the de�nition of proje
tion in Se
. 2-B). In fa
t, if

{
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Algorithms 1 and 2: h(1)n+1, h(2)n+1SAGP: h(4)n+1

h(1)n+1, h(2)n+1h(3)n+1h(4)n+1 B2P: h(3)n+1hn
h�

Cs
RN

C(n)0 [n℄C(n)� [n℄
C(n)� [n� 1℄

Fig. 2 A geometri
 interpretation of non-embedded 
on-straint methods (the SAGP and the B2P) and the proposedmethods. The dotted area shows C(n)� [n℄ \ C(n)� [n � 1℄.hhn; r[n℄i = 0, there exist two nearest points from hn inH(+)n [H(�)n ; PH(+)n (hn) and PH(�)n (hn). Fortunately, ageometri
 
omparison of the SAGP with the proposedalgorithms is possible (see Remark 2), sin
e C(n)0 [n℄ 
o-in
ides with H(+)n [or H(�)n ℄ when sgnhhn; r[n℄i = 1 (orsgnhhn; r[n℄i = �1), by (7), (9) and Table 1. It is eas-ily seen that C(n)0 used in the B2P is a 
losed 
onvexset bounded by the hyperplanes H(+)n and H(�)n usedin the SAGP.Figures 1 and 2 illustrate geometri
 interpreta-tions of the proposed algorithms 
ompared with a sim-ple embedded 
onstraint method (the CNLMS) andnon-embedded 
onstraint methods (the SAGP and theB2P), respe
tively. A geometri
 interpretation of theOPM-GP is also possible; the set Hn is nothing butthe translated subspa
e of H(+)n [or H(�)n ℄. For visual
larity, however, it is omitted. For the proposed algo-rithm and the B2P, the uniform weights, !(n)� = 1=2(8� = 1; 2), are employed with q = 2 parallel pro-
essors. For the B2P, the step size is set to Mn.For the other methods, the step sizes are set to 1.The MMSE optimal �lter h� is assumed to satisfyh� 2 C(n)� [n℄ \ C(n)� [n � 1℄ \ Cs. All algorithms areassumed to have, if ne
essary, a 
ommon amplitude es-timation bA1;n+1 and a 
orre
t bit estimation bb1;n[n℄. Aremark on geometri
 
omparisons is given below.Remark 2: (Geometri
 Comparisons)Referring to Fig. 1, we see that the proposed algo-rithms generate 
loser points to the MMSE optimal�lter h� than the CNLMS due to its parallel stru
-ture; i.e., the proposed algorithms utilize multiple datasimultaneously. As also seen in the �gure, Algorithm1 takes an averaged dire
tion of exa
t proje
tions ontofC(n)� [�℄\Csg�2In, while Algorithm 2 takes an averageddire
tion of relaxed proje
tions. The \relaxation" de-
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Fig. 3 SINR 
urves of Algorithm 1 with di�erent valuesof in
ation parameter � under SNR=15 dB.pends on the angle between s1 (the normal ve
tor ofthe hyperplane Cs) and r[�℄ (the one of the boundaryhyperplanes of C(n)� [�℄).Referring to Fig. 2, we see that the B2P gener-ates a 
loser point to h� than the SAGP due to itsparallel stru
ture. The proposed algorithms generateeven 
loser points than the B2P due to its embedded
onstraint stru
ture in addition to its parallel stru
-ture. We also see that the SAGP and the B2P are
onstru
ted by two steps; the se
ond step PCs(�) in Ta-ble 1 is to enfor
e the �lter in the 
onstraint set. On theother hand, the CNLMS and the proposed algorithmsupdate the �lter along the 
onstraint set, and hen
ethey are 
onstru
ted by one step.Finally, from our observation, a simple strategy forthe design of 
 and q [
f. (6) and (9)℄ is given below.Remark 3: (On Design of 
 and q)From Remark B.1 (d) in Appendix B, bA1;n+1 � A1should be valid for good steady state performan
e,whi
h 
an be obtained with small 
, although it mayde
rease the speed of 
onvergen
e [7℄. From our experi-en
e, q leads to good performan
e when Ta:
:=qTb > 0:1,where Ta:
: and Tb denote the period when the 
hannelsare almost 
onstant and the bit period, respe
tively.To exemplify the dis
ussion in Remark 2, wepresent numeri
al 
omparisons in the following se
tion.4. Simulation ResultsThis se
tion provides the results of some 
omputersimulations, all of whi
h are performed under the fol-lowing 
onditions. The number of interfering users is(K � 1) = 5, and all users have amplitude 10 timesgreater than the amplitude of the desired signal A1 = 1.Signals are modulated by 31-length Gold sequen
es
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urves of the proposed algorithms with � (i)�xed throughout simulations and (ii) swit
hed after 
onver-gen
e.(N = 31), whi
h are 
hosen randomly. For all algo-rithms, h0 = s1 2 Cs is employed and, if the estima-tion of the amplitude is needed, the forgetting fa
tor isset to 
 = 0:01, by following the way in [7, 15℄.4.1 E�e
ts of In
ation ParameterFirst, the e�e
ts of the in
ation parameter � in (9)are examined. Figure 3 
ompares the output Signalto Interferen
e-plus-Noise Ratio (SINR) performan
e ofAlgorithm 1, whi
h at the n-th iteration is obtained bySINRn := PUu=1 Dh(u)n ; s1E2PUu=1 �Dh(u)n ;r(u)[n℄�A(u)1 b(u)1 [n℄s1EA(u)1 �2 :



YUKAWA et al.: EFFICIENT BLIND MAI SUPPRESSION IN DS/CDMA BY EMBEDDED CONSTRAINT TECHNIQUES 7

5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R Matched Filter
Proposed 1
Proposed 2
B2P
CNLMS
OPM−GP
SAGP
Optimal Filter h*Fig. 6 Proposed algorithms versus other blind methods inBER.Here h(u)n and r(u)[n℄ are the respe
tive ve
tors at theu-th realization, A(u)1 and b(u)1 [n℄ are respe
tively theamplitude and the n-th transmitted bits of the desireduser at the u-th realization, and U = 500 is the numberof realizations. For simpli
ity, the path delays of users2 to 6 are integer multiples of the 
hip rate aT
 2 [0; Tb℄,a 2 N, whi
h were 
hosen randomly with equal proba-bility among the given multiples at every realizations.The simulations are performed under Signal (or bit en-ergy) to Noise Ratio (SNR) := 10 log10 A21�2n =15 dB,where �2n is the varian
e of additive noise. Di�erent�xed values, � = 0; 0.2, 0.4 and 0.7, are assigned to thein
ation parameter. For simpli
ity, we set r[i℄ = r[1℄for i � 1, and !(n)� = 1q , 8� 2 In. The step size �n = 0:2(see also below) is employed with q = 16 parallel pro-je
tions.We observe that, although \� = 0" exhibits thefastest initial 
onvergen
e in the experiments, \� = 0:2"a
hieves better steady state performan
e (\� = 0:4"and \� = 0:7" are also expe
ted to a
hieve higherSINR than \� = 0" after more iterations). Consid-ering the performan
e in the initial and steady states,\� = 0:2 � 6�2n" may be an e�e
tive �xed value in thissimulation. Note, however, that � should be designedby taking into a

ount in
uen
e of MAI and estima-tion errors in bA1;n+1 & bb1;n[i℄ as well as noise. Hen
e,the design of in
ation parameter needs additional dis-
ussion, whi
h will be addressed in a future work; asimple fundamental analysis on this designing problemis reported in [26℄. With an appropriately designed in-
ation parameter, the step size �n 
an naturally be setto 1; h� may not belong to the simple sets we designedherein, and �n = 0:2 realizes robustness against su
h asituation in our simulations.A simple review of Fig. 3 brings a natural sug-gestion that ex
ellent performan
e in both initial and

steady states will be simultaneously realized by assign-ing \� = 0" at the beginning and \an appropriate valueof �" after 
onvergen
e; this suggestion is 
onsistentwith the results in [26℄. To verify this suggestion, ad-ditional experiments are performed below.4.2 Proposed Methods with Change of In
ation Pa-rameter & Comparison with Other Blind MethodsWe assign 0 at the beginning and 0:7 after iterationnumber 500 to the in
ation parameter �, and the otherparameters are the same as employed in Fig. 3. Fig-ure 4 
ompares the SINR performan
e, under SNR=15 dB, of the proposed algorithms with the ones pre-sented in Table 1 (For 
omparisons with another ma-jor blind method, the Constant Modulus with Ampli-tude Estimation (CMAE) [11℄, see [15℄). For Algo-rithm 2 and the B2P, the same parameters as Algo-rithm 1 are employed (For the B2P, the step size is setto �n = 0:2Mn). For the OPM-GP, the SAGP andthe CNLMS, step sizes are set to 0.2 for a fair 
om-parison. As expe
ted from Remark 2, we observe thatthe proposed algorithms outperform all other methodsin terms of speed of 
onvergen
e, while attaining ex
el-lent SINR in the steady state. Moreover, the additional
omputational 
omplexity imposed by the proposed al-gorithms 
an be somehow alleviated by using pro
essorsin parallel (see Remark 1). As suggested in the end ofSe
. 4-A, we observe that the steady state performan
eof Algorithm 1 is improved by around 1 dB, although,judged from Fig. 3, the 
hoi
e of � = 0:7 may not bethe best.To highlight the steady state performan
e, the BitError Rate (BER) performan
e is depi
ted in Figs. 5and 6 over SNR ranging from 5 to 15 dB. To 
apturethe steady state performan
e in a fair manner, 6000bits are transmitted at ea
h realization and the last1000 bits for 100 realizations are used to 
al
ulate theBER. For a 
omparison, the line by the optimal �lterh� is depi
ted, whi
h is 
omputed by (B.1) and Rr =A21s1sT1 +PLl=2 A2l �sl�sTl + �2nI , with full information,based on the independen
e assumption.Figure 5 
ompares the BER of the proposed algo-rithms with \
hanging the in
ation parameter � as inFig. 4" and \�xing � to 0". We see that the BER per-forman
e is signi�
antly improved due to the 
hangeof �. In Fig. 6, the BER performan
e of the proposedalgorithms with 
hanging � is 
ompared with the blindmethods employed in Fig. 4. Referring to Figs. 4 and 6,we observe that the proposed algorithms a
hieve mu
hfaster 
onvergen
e in SINR than the SAGP and theCNLMS as well as almost the same BER performan
eas the optimal �lter. Also we observe that the pro-posed algorithms drasti
ally outperform the OPM-GPand the B2P in BER. Reviewing Fig. 3 and 
onsider-ing that the CNLMS is a spe
ial 
ase of Algorithm 1with q = 1 (see (11) and Table 1), another suggestion
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Fig. 7 \Proposed algorithms with q swit
hed to 1 after
onvergen
e" versus other blind methods in SINR underSNR=15 dB.is brought that the steady state performan
e of Algo-rithm 1 will also be improved by swit
hing q to 1 after
onvergen
e.To verify this se
ond suggestion, further experi-ments for the proposed algorithms are performed underSNR = 15 dB, where the number of parallel proje
tionsis set to q = 16 at the beginning and it is swit
hed to1 at iteration number 500 and the in
ation parame-ter is �xed to � = 0 throughout the simulations. Theother parameters are the same as in Fig. 4. Figure 7
ompares the SINR performan
e of the proposed al-gorithms with the blind methods used in Fig. 4. Weobserve that the performan
e in the steady state is ef-�
iently improved by de
reasing the number of parallelproje
tions after 
onvergen
e, as expe
ted by the se
-ond suggestion. This swit
hing strategy is easily real-ized in hardware implementation.4.3 Comparison with Non-Blind MethodsFinally, Fig. 8 
ompares the proposed algorithms, un-der SNR=15 dB, with the non-blind (semi-blind) al-gorithms; Generalized Proje
tion (GP) algorithm [7℄with known amplitude of desired user, the NormalizedLeast Mean Square (NLMS) and the Re
ursive LeastSquares (RLS) algorithms [27℄ with training sequen
es.For the non-blind methods, parameters are adjusted toa
hieve the fastest noti
eable rate of 
onvergen
e. Forthe proposed algorithms and the B2P, the employedparameters are the same as in Fig. 4. We observe thatthe proposed algorithms a
hieve rather faster 
onver-gen
e than the non-blind NLMS, and exhibit 
ompara-ble speed of 
onvergen
e to the non-blind RLS. Theseremarkable improvements are a

omplished by the em-bedded 
onstraint and parallel stru
tures.
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Fig. 8 Proposed algorithms versus non-blind methods inSINR under SNR=15 dB. RLS: Æ = 1:0�10�4 and � = 0:98.NLMS: � = 0:6. GP: � = 0:6.5. Con
luding RemarksThis paper has presented two blind adaptive �lteringalgorithms for the MAI suppression in DS/CDMA sys-tems. Sin
e the proposed algorithms are based on theparallel proje
tion with the embedded 
onstraint stru
-ture, they a
hieve 
loser points to the MMSE optimal�lter than the existing methods at ea
h iteration. Sim-ulation results have demonstrated that the proposedalgorithms exhibit ex
ellent performan
e.The extensive experiments presented in this pa-per suggest that the A-PCP (see Appendix D) and theEC-APSM may in
lude ex
ellent embedded 
onstraintalgorithms. Those two families of embedded 
onstraintalgorithms (i.e., A-PCP and EC-APSM) are expe
tedto be useful not only in 
ommuni
ations but also ina wide range of appli
ations. In the presented simu-lations, we fo
us on the uniform weights (!(n)� = 1q ,8� 2 In; see the previous se
tion) for simpli
ity. Forfurther improvements, an eÆ
ient strategi
 weightingte
hnique su
h as the one proposed in [28, 29℄ would bee�e
tive. An extension of the proposed algorithms ispossible, by following the way in [30℄, to the more gen-eral 
ase when the signature at the re
eiver is 
omplex-valued as in multipath 
hannels. Furthermore, to em-ploy the proposed algorithms in multipath 
hannels,
hannel estimation te
hniques should be used and thealgorithms must be robust against errors in the 
hannelestimation. An extension of the proposed algorithms tosu
h 
ases will be addressed in a future work.Appendix A: Properties of S
heme 1S
heme 1 has the following properties [16{18℄.
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ity)


hn+1 � h�(n)


 � 


hn � h�(n)


 ; 8n 2 N;8h�(n) 2 
n := fh 2 C : �n(h) = infx2C �n(x)g:(b) (Asymptoti
 minimization)Suppose (�0n(hn))n2N is bounded and 9N0 s.t. (i)infx2C �n(x) = 0, 8n � N0 and (ii) 
 :=Tn�N0 
n 6= ;. Then, we havelimn!1�n(hn) = 0:Note that �0n used to derive Algorithm 1 (or Algo-rithm 2) in Se
. 3 is automati
ally bounded [17℄.Appendix B: MMSE and MOE Dete
torsLet us show a simple observation.Observation 1: Suppose (I) the auto-
orrelation ma-trix Rr := Efr[i℄r[i℄T g is full rank () h� is unique),and (II) yrb := Efr[i℄b1[i℄g = �s1, 9� 2 R. Then, forany given � 2 R,h�= R�1r s1sT1R�1r s1 =argminh2Cs E �(hh; r[i℄i � �b1[i℄)2	| {z }=: h�� : (B.1)Sket
h of proof:By the 
ondition (I) and \Lagrangian multiplier"methodology (e.g., [31℄), we 
an easily obtainh�� = R�1r s1sT1R�1r s1 + � �R�1r yrb � sT1R�1r yrbsT1R�1r s1 R�1r s1� ;and, by imposing the 
ondition (II), we readily verifyh�� = h� = R�1r s1sT1R�1r s1 : 2Remark B.1:(a) Without (I), h�� is not ne
essarily unique.(b) The 
ondition (II) holds under slow time-varyingfading situations with the following assumption:Efb1[i℄bl[i℄g = 0, 8l 2 f2; 3; � � � ; Lg, andEfb1[i℄n[i℄g = 0.(
) The �lters h�0 and h�A1(= h�) are 
alled the MOEdete
tor and the (
onstrained) MMSE dete
tor, re-spe
tively. Observation 1 shows that the MMSEand the MOE dete
tors 
oin
ide under (I) and (II).(d) By h� = h�� (8� 2 R) under (I) and (II), a naturalquestion would be: Does the seteC(n)� [i℄ := �h 2 RN : �hh; r[i℄i � �bb1;n[i℄�2 � ��

with an arbitrarily 
hosen � 
ontain the opti-mal �lter h�? If \yes", we 
ould get an opti-misti
 
on
lusion that the amplitude estimationbA1;n+1 is not ne
essary. Unfortunately, however,the answer is \no", of whi
h the reason is as fol-lows. By (4), hh; r[i℄i � �bb1;n[i℄ has the termA1b1[i℄� �bb1;n[i℄ in addition to the terms of MAIand noise. Hen
e, bounding �hh; r[i℄i � �bb1;n[i℄�2by small � does not ne
essarily suppress MAI suf-�
iently (without amplifying noise severely) whenjA1 � �j � 0, whi
h implies, from the 
ontext be-tween (4) and (5), that � should be 
lose to A1 inorder to ensure h� 2 eC(n)� [i℄. Therefore, high a
-
ura
y of the estimation of A1 is essential for goodsteady state performan
e.Appendix C: Proof of Equation (12)Suppose h 2 Cs. For notational simpli
ity, in this se
-tion, we represent the sto
hasti
 property set C(n)� [�℄ asC [see (9)℄. The set C is a 
losed 
onvex set boundedby two hyperplanesH+ := fx 2 RN : hx; r[�℄i � bA1;n+1bb1;n[�℄ = p�g;H� := fx 2 RN : hx; r[�℄i � bA1;n+1bb1;n[�℄ = �p�g:(a) Assume �p� � hh; r[�℄i � bA1;n+1bb1;n[�℄ � p� (,h 2 C). In this 
ase,PC\Cs(h) = h:In the other 
ases, PC\Cs(h) = PHsgn\Cs(h),where Hsgn (sgn: + or �) is the nearest hyper-plane, from h, of the two H+ and H�.(b) Assume hh; r[�℄i � bA1;n+1bb1;n[�℄ > p� () h =2 C).In this 
ase, the nearest hyperplane is obviouslyH+, and hen
e PC\Cs(h) = PH+\Cs(h). Sin
eH+ \ Cs = fx : xT [s1; r[�℄℄ = h1; bA1;n+1bb1;n[�℄ +p�ig;we have (
f. e.g., [32, p.65 Theorem 2℄)PH+\Cs(h) = h�G(GTG)�1(GTh� v);whereG := [r[�℄; s1℄ and v := � bA1;n+1bb1;n[�℄ +p�1 �.Using hs1;hi = 1, ks1k = 1 and I�s1sT1 = Q (seeRequirements in Algorithm 1), we obtainPC\Cs(h) =h�hh; r[�℄i � bA1;n+1bb1;n[�℄�p�r[�℄TQr[�℄ Qr[�℄:(
) Assume hh; r[�℄i� bA1;n+1bb1;n[�℄ < �p� () h =2 C).In this 
ase, the nearest hyperplane is obviouslyH�, and hen
e PC\Cs(h) = PH�\Cs(h). In analogywith (b), we 
an verify



10 IEICE TRANS. FUNDAMENTALS, VOL.E88{A, NO.8 AUGUST 2005PC\Cs(h) =h�hh; r[�℄i � bA1;n+1bb1;n[�℄ +p�r[�℄TQr[�℄ Qr[�℄;whi
h 
ompletes the proof. 2Appendix D: New Family of EmbeddedConstraint AlgorithmsLet us 
onsider the following problem.Problem 1: Suppose q sets fS�(n)gq�=1 � RN are de-�ned for ea
h n 2 N. Find a sequen
e (hn)n2N �RN that asymptoti
ally minimizes the distan
e to(fS�(n)gq�=1)n2N over a linear varietyy V .Setting V = Cs and S�(n) = C(n)� [�℄, 8n 2 N,8� 2 In(:= f1; 2; � � � ; qg), Problem 1 is redu
ed to theone in Se
. 3. Conversely, using V and S�(n) insteadof Cs and C(n)� [�℄, 8n 2 N, 8� 2 In, in Algorithm 1,respe
tively, we obtain the following s
heme to solveProblem 1.S
heme 2: (Adaptive Parallel Constrained Pro-je
tion [A-PCP℄ Method) Generate a sequen
e(hn)n2N byhn+1 = hn + �nMn qX�=1 !(n)� PS�(n)\V (hn)� hn! ;8n 2 N, where h0 2 V , �n 2 [0; 2℄ andMn := 8>>>><>>>>:Pq�=1 !(n)� 

PS�(n)\V (hn)� hn

2


Pq�=1 !(n)� PS�(n)\V (hn)� hn


2 ;if hn =2 Tq�=1 S�(n) \ V ;1; otherwise:If, in S
heme 2, the proje
tion onto S�(n) \ Vis 
omputationally expensive, an outer approximating
losed half-spa
e 
an be used instead of S�(n) as in theadaptive parallel subgradient proje
tion algorithm (see[33℄). When S�(n) (8n 2 N) is a hyperplane, the 
hoi
eof q = 1 in S
heme 2 derives the CNLMS algorithm[14℄.A
knowledgementThe authors would like to express their deep gratitudeto Prof. K. Sakaniwa of Tokyo Institute of Te
hnologyfor fruitful dis
ussions. This work was supported inpart by JSPS grants-in-Aid (178440).yGiven v 2 RN and a 
losed subspa
e M � RN , thetranslation of M by v de�nes the linear variety V := v +M := fv +m : m 2 Mg. Suppose dim(M?) = 1, whereM? = fx 2 RN : hx;mi = 0; 8m 2 Mg. Then, V is
alled hyperplane, whi
h 
an be expressed as V = fx 2RN : ha;xi = 
g for some (0 6=)a 2 RN and 
 2 R.
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